{"title":"正确处理位置和旋转噪声的六自由度数据的配准。","authors":"Marek Franaszek","doi":"10.6028/jres.118.013","DOIUrl":null,"url":null,"abstract":"<p><p>When two six degrees of freedom (6DOF) datasets are registered, a transformation is sought that minimizes the misalignment between the two datasets. Commonly, the measure of misalignment is the sum of the positional and rotational components. This measure has a dimensional mismatch between the positional component (unbounded and having length units) and the rotational component (bounded and dimensionless). The mismatch can be formally corrected by dividing the positional component by some scale factor with units of length. However, the scale factor is set arbitrarily and, depending on its value, more or less importance is associated with the positional component relative to the rotational component. This may result in a poorer registration. In this paper, a new method is introduced that uses the same form of bounded, dimensionless measure of misalignment for both components. Numerical simulations with a wide range of variances of positional and rotational noise show that the transformation obtained by this method is very close to ground truth. Additionally, knowledge of the contribution of noise to the misalignment from individual components enables the formulation of a rational method to handle noise in 6DOF data. </p>","PeriodicalId":17039,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"118 ","pages":"280-91"},"PeriodicalIF":1.5000,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.6028/jres.118.013","citationCount":"1","resultStr":"{\"title\":\"Registration of Six Degrees of Freedom Data with Proper Handling of Positional and Rotational Noise.\",\"authors\":\"Marek Franaszek\",\"doi\":\"10.6028/jres.118.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When two six degrees of freedom (6DOF) datasets are registered, a transformation is sought that minimizes the misalignment between the two datasets. Commonly, the measure of misalignment is the sum of the positional and rotational components. This measure has a dimensional mismatch between the positional component (unbounded and having length units) and the rotational component (bounded and dimensionless). The mismatch can be formally corrected by dividing the positional component by some scale factor with units of length. However, the scale factor is set arbitrarily and, depending on its value, more or less importance is associated with the positional component relative to the rotational component. This may result in a poorer registration. In this paper, a new method is introduced that uses the same form of bounded, dimensionless measure of misalignment for both components. Numerical simulations with a wide range of variances of positional and rotational noise show that the transformation obtained by this method is very close to ground truth. Additionally, knowledge of the contribution of noise to the misalignment from individual components enables the formulation of a rational method to handle noise in 6DOF data. </p>\",\"PeriodicalId\":17039,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":\"118 \",\"pages\":\"280-91\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.6028/jres.118.013\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.118.013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.118.013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Registration of Six Degrees of Freedom Data with Proper Handling of Positional and Rotational Noise.
When two six degrees of freedom (6DOF) datasets are registered, a transformation is sought that minimizes the misalignment between the two datasets. Commonly, the measure of misalignment is the sum of the positional and rotational components. This measure has a dimensional mismatch between the positional component (unbounded and having length units) and the rotational component (bounded and dimensionless). The mismatch can be formally corrected by dividing the positional component by some scale factor with units of length. However, the scale factor is set arbitrarily and, depending on its value, more or less importance is associated with the positional component relative to the rotational component. This may result in a poorer registration. In this paper, a new method is introduced that uses the same form of bounded, dimensionless measure of misalignment for both components. Numerical simulations with a wide range of variances of positional and rotational noise show that the transformation obtained by this method is very close to ground truth. Additionally, knowledge of the contribution of noise to the misalignment from individual components enables the formulation of a rational method to handle noise in 6DOF data.
期刊介绍:
The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards.
In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research.
The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.