{"title":"非线性抛物方程的逆时间危险延拓及非线性模糊图像去模糊实验。","authors":"Alfred S Carasso","doi":"10.6028/jres.118.010","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930's, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. </p>","PeriodicalId":17039,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2013-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.6028/jres.118.010","citationCount":"12","resultStr":"{\"title\":\"Hazardous Continuation Backward in Time in Nonlinear Parabolic Equations, and an Experiment in Deblurring Nonlinearly Blurred Imagery.\",\"authors\":\"Alfred S Carasso\",\"doi\":\"10.6028/jres.118.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930's, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. </p>\",\"PeriodicalId\":17039,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.6028/jres.118.010\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.118.010\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.118.010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Hazardous Continuation Backward in Time in Nonlinear Parabolic Equations, and an Experiment in Deblurring Nonlinearly Blurred Imagery.
Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 1930's, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly from the linear, autonomous, self adjoint, canonical model. This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. Successful backward continuation from t=T to t = 0, would recover the original sharp image. Visual recognition provides meaningful evaluation of the degree of success or failure in the reconstructed solutions. Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes.
期刊介绍:
The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards.
In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research.
The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.