{"title":"NIST模拟实耳条件下助听器指向性指数测量系统。","authors":"Randall P Wagner","doi":"10.6028/jres.118.005","DOIUrl":null,"url":null,"abstract":"<p><p>The directivity index is a parameter that is commonly used to characterize the performance of directional hearing aids, and is determined from the measured directional response. Since this response is different for a hearing aid worn on a person as compared to when it is in a free field, directivity index measurements of hearing aids are usually done under simulated real-ear conditions. Details are provided regarding the NIST system for measuring the hearing aid directivity index under these conditions and how this system is used to implement a standardized procedure for performing such measurements. This procedure involves a sampling method that utilizes sound source locations distributed in a semi-aligned zone array on an imaginary spherical surface surrounding a standardized acoustical test manikin. The capabilities of the system were demonstrated over the frequency range of one-third-octave bands with center frequencies from 200 Hz to 8000 Hz through NIST participation in an interlaboratory comparison. This comparison was conducted between eight different laboratories of members of Working Group S3/WG48, Hearing Aids, established by Accredited Standards Committee S3, Bioacoustics, which is administered by the Acoustical Society of America and accredited by the American National Standards Institute. Directivity measurements were made for a total of six programmed memories in two different hearing aids and for the unaided manikin with the manikin right pinna accompanying the aids. Omnidirectional, cardioid, and bidirectional response patterns were measured. Results are presented comparing the NIST data with the reference values calculated from the data reported by all participating laboratories. </p>","PeriodicalId":17039,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":"118 ","pages":"105-24"},"PeriodicalIF":1.5000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.6028/jres.118.005","citationCount":"1","resultStr":"{\"title\":\"NIST System for Measuring the Directivity Index of Hearing Aids under Simulated Real-Ear Conditions.\",\"authors\":\"Randall P Wagner\",\"doi\":\"10.6028/jres.118.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The directivity index is a parameter that is commonly used to characterize the performance of directional hearing aids, and is determined from the measured directional response. Since this response is different for a hearing aid worn on a person as compared to when it is in a free field, directivity index measurements of hearing aids are usually done under simulated real-ear conditions. Details are provided regarding the NIST system for measuring the hearing aid directivity index under these conditions and how this system is used to implement a standardized procedure for performing such measurements. This procedure involves a sampling method that utilizes sound source locations distributed in a semi-aligned zone array on an imaginary spherical surface surrounding a standardized acoustical test manikin. The capabilities of the system were demonstrated over the frequency range of one-third-octave bands with center frequencies from 200 Hz to 8000 Hz through NIST participation in an interlaboratory comparison. This comparison was conducted between eight different laboratories of members of Working Group S3/WG48, Hearing Aids, established by Accredited Standards Committee S3, Bioacoustics, which is administered by the Acoustical Society of America and accredited by the American National Standards Institute. Directivity measurements were made for a total of six programmed memories in two different hearing aids and for the unaided manikin with the manikin right pinna accompanying the aids. Omnidirectional, cardioid, and bidirectional response patterns were measured. Results are presented comparing the NIST data with the reference values calculated from the data reported by all participating laboratories. </p>\",\"PeriodicalId\":17039,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":\"118 \",\"pages\":\"105-24\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2013-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.6028/jres.118.005\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.118.005\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2013/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.118.005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
NIST System for Measuring the Directivity Index of Hearing Aids under Simulated Real-Ear Conditions.
The directivity index is a parameter that is commonly used to characterize the performance of directional hearing aids, and is determined from the measured directional response. Since this response is different for a hearing aid worn on a person as compared to when it is in a free field, directivity index measurements of hearing aids are usually done under simulated real-ear conditions. Details are provided regarding the NIST system for measuring the hearing aid directivity index under these conditions and how this system is used to implement a standardized procedure for performing such measurements. This procedure involves a sampling method that utilizes sound source locations distributed in a semi-aligned zone array on an imaginary spherical surface surrounding a standardized acoustical test manikin. The capabilities of the system were demonstrated over the frequency range of one-third-octave bands with center frequencies from 200 Hz to 8000 Hz through NIST participation in an interlaboratory comparison. This comparison was conducted between eight different laboratories of members of Working Group S3/WG48, Hearing Aids, established by Accredited Standards Committee S3, Bioacoustics, which is administered by the Acoustical Society of America and accredited by the American National Standards Institute. Directivity measurements were made for a total of six programmed memories in two different hearing aids and for the unaided manikin with the manikin right pinna accompanying the aids. Omnidirectional, cardioid, and bidirectional response patterns were measured. Results are presented comparing the NIST data with the reference values calculated from the data reported by all participating laboratories.
期刊介绍:
The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards.
In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research.
The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.