K Kupczik, C A Dobson, R H Crompton, R Phillips, C E Oxnard, M J Fagan, P O'Higgins
{"title":"发育中的猕猴眶上环的咀嚼负荷和骨适应。","authors":"K Kupczik, C A Dobson, R H Crompton, R Phillips, C E Oxnard, M J Fagan, P O'Higgins","doi":"10.1002/ajpa.20972","DOIUrl":null,"url":null,"abstract":"<p><p>Research on the evolution and adaptive significance of primate craniofacial morphologies has focused on adult, fully developed individuals. Here, we investigate the possible relationship between the local stress environment arising from masticatory loadings and the emergence of the supraorbital torus in the developing face of the crab-eating macaque Macaca fascicularis. By using finite element analysis (FEA), we are able to evaluate the hypothesis that strain energy density (SED) magnitudes are high in subadult individuals with resulting bone growth in the supraorbital torus. We developed three micro-CT-based FEA models of M. fascicularis skulls ranging in dental age from deciduous to permanent dentitions and validated them against published experimental data. Applied masticatory muscle forces were estimated from physiological cross-sectional areas of macaque cadaveric specimens. The models were sequentially constrained at each working side tooth to simulate the variation of the bite point applied during masticatory function. Custom FEA software was used to solve the voxel-based models and SED and principal strains were computed. A physiological superposition SED map throughout the face was created by allocating to each element the maximum SED value from each of the load cases. SED values were found to be low in the supraorbital torus region throughout ontogeny, while they were consistently high in the zygomatic arch and infraorbital region. Thus, if the supraorbital torus arises to resist masticatory loads, it is either already adapted in each of our subadult models so that we do not observe high SED or a lower site-specific bone deposition threshold must apply.</p>","PeriodicalId":7587,"journal":{"name":"American journal of physical anthropology","volume":"139 2","pages":"193-203"},"PeriodicalIF":2.6000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ajpa.20972","citationCount":"91","resultStr":"{\"title\":\"Masticatory loading and bone adaptation in the supraorbital torus of developing macaques.\",\"authors\":\"K Kupczik, C A Dobson, R H Crompton, R Phillips, C E Oxnard, M J Fagan, P O'Higgins\",\"doi\":\"10.1002/ajpa.20972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on the evolution and adaptive significance of primate craniofacial morphologies has focused on adult, fully developed individuals. Here, we investigate the possible relationship between the local stress environment arising from masticatory loadings and the emergence of the supraorbital torus in the developing face of the crab-eating macaque Macaca fascicularis. By using finite element analysis (FEA), we are able to evaluate the hypothesis that strain energy density (SED) magnitudes are high in subadult individuals with resulting bone growth in the supraorbital torus. We developed three micro-CT-based FEA models of M. fascicularis skulls ranging in dental age from deciduous to permanent dentitions and validated them against published experimental data. Applied masticatory muscle forces were estimated from physiological cross-sectional areas of macaque cadaveric specimens. The models were sequentially constrained at each working side tooth to simulate the variation of the bite point applied during masticatory function. Custom FEA software was used to solve the voxel-based models and SED and principal strains were computed. A physiological superposition SED map throughout the face was created by allocating to each element the maximum SED value from each of the load cases. SED values were found to be low in the supraorbital torus region throughout ontogeny, while they were consistently high in the zygomatic arch and infraorbital region. Thus, if the supraorbital torus arises to resist masticatory loads, it is either already adapted in each of our subadult models so that we do not observe high SED or a lower site-specific bone deposition threshold must apply.</p>\",\"PeriodicalId\":7587,\"journal\":{\"name\":\"American journal of physical anthropology\",\"volume\":\"139 2\",\"pages\":\"193-203\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ajpa.20972\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physical anthropology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/ajpa.20972\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physical anthropology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/ajpa.20972","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Masticatory loading and bone adaptation in the supraorbital torus of developing macaques.
Research on the evolution and adaptive significance of primate craniofacial morphologies has focused on adult, fully developed individuals. Here, we investigate the possible relationship between the local stress environment arising from masticatory loadings and the emergence of the supraorbital torus in the developing face of the crab-eating macaque Macaca fascicularis. By using finite element analysis (FEA), we are able to evaluate the hypothesis that strain energy density (SED) magnitudes are high in subadult individuals with resulting bone growth in the supraorbital torus. We developed three micro-CT-based FEA models of M. fascicularis skulls ranging in dental age from deciduous to permanent dentitions and validated them against published experimental data. Applied masticatory muscle forces were estimated from physiological cross-sectional areas of macaque cadaveric specimens. The models were sequentially constrained at each working side tooth to simulate the variation of the bite point applied during masticatory function. Custom FEA software was used to solve the voxel-based models and SED and principal strains were computed. A physiological superposition SED map throughout the face was created by allocating to each element the maximum SED value from each of the load cases. SED values were found to be low in the supraorbital torus region throughout ontogeny, while they were consistently high in the zygomatic arch and infraorbital region. Thus, if the supraorbital torus arises to resist masticatory loads, it is either already adapted in each of our subadult models so that we do not observe high SED or a lower site-specific bone deposition threshold must apply.
期刊介绍:
The American Journal of Physical Anthropology (AJPA) is the official journal of the American Association of Physical Anthropologists. The Journal is published monthly in three quarterly volumes. In addition, two supplements appear on an annual basis, the Yearbook of Physical Anthropology, which publishes major review articles, and the Annual Meeting Issue, containing the Scientific Program of the Annual Meeting of the American Association of Physical Anthropologists and abstracts of posters and podium presentations. The Yearbook of Physical Anthropology has its own editor, appointed by the Association, and is handled independently of the AJPA. As measured by impact factor, the AJPA is among the top journals listed in the anthropology category by the Social Science Citation Index. The reputation of the AJPA as the leading publication in physical anthropology is built on its century-long record of publishing high quality scientific articles in a wide range of topics.