利用NASA GEMS集合卡尔曼滤波预测地磁长期变化:IGRF-13的候选SV模型。

IF 3 3区 地球科学
Earth, Planets and Space Pub Date : 2021-01-01 Epub Date: 2021-02-11 DOI:10.1186/s40623-020-01324-w
Andrew Tangborn, Weijia Kuang, Terence J Sabaka, Ce Yi
{"title":"利用NASA GEMS集合卡尔曼滤波预测地磁长期变化:IGRF-13的候选SV模型。","authors":"Andrew Tangborn,&nbsp;Weijia Kuang,&nbsp;Terence J Sabaka,&nbsp;Ce Yi","doi":"10.1186/s40623-020-01324-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>We have produced a 5-year mean secular variation (SV) of the geomagnetic field for the period 2020-2025. We use the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the NASA Goddard geodynamo model and ensemble Kalman filter (EnKF) with 400 ensemble members. Geomagnetic field models are used as observations for the assimilation, including <i>gufm1</i> (1590-1960), CM4 (1961-2000) and CM6 (2001-2019). The forecast involves a bias correction scheme that assumes that the model bias changes on timescales much longer than the forecast period, so that they can be removed by successive forecast series. The algorithm was validated on the time period 2010-2015 by comparing with CM6 before being applied to the 2020-2025 time period. This forecast has been submitted as a candidate predictive model of IGRF-13 for the period 2020-2025.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"73 1","pages":"47"},"PeriodicalIF":3.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40623-020-01324-w","citationCount":"4","resultStr":"{\"title\":\"Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.\",\"authors\":\"Andrew Tangborn,&nbsp;Weijia Kuang,&nbsp;Terence J Sabaka,&nbsp;Ce Yi\",\"doi\":\"10.1186/s40623-020-01324-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>We have produced a 5-year mean secular variation (SV) of the geomagnetic field for the period 2020-2025. We use the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the NASA Goddard geodynamo model and ensemble Kalman filter (EnKF) with 400 ensemble members. Geomagnetic field models are used as observations for the assimilation, including <i>gufm1</i> (1590-1960), CM4 (1961-2000) and CM6 (2001-2019). The forecast involves a bias correction scheme that assumes that the model bias changes on timescales much longer than the forecast period, so that they can be removed by successive forecast series. The algorithm was validated on the time period 2010-2015 by comparing with CM6 before being applied to the 2020-2025 time period. This forecast has been submitted as a candidate predictive model of IGRF-13 for the period 2020-2025.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":11409,\"journal\":{\"name\":\"Earth, Planets and Space\",\"volume\":\"73 1\",\"pages\":\"47\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s40623-020-01324-w\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth, Planets and Space\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s40623-020-01324-w\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/2/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth, Planets and Space","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40623-020-01324-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

摘要:我们得到了2020-2025年期间地磁场的5年平均长期变化(SV)。本文采用NASA地磁系综建模系统(GEMS),该系统由NASA戈达德地球动力学模型和系综卡尔曼滤波(EnKF)组成,共包含400个系综成员。利用地磁场模型作为同化观测,包括gufm1(1590-1960)、CM4(1961-2000)和CM6(2001-2019)。预报涉及一种偏差校正方案,该方案假定模式偏差在时间尺度上的变化比预报周期长得多,因此可以通过连续的预报序列来消除它们。在将算法应用于2020-2025年之前,通过与CM6进行2010-2015年时间段的对比验证。该预报已作为2020-2025年期间IGRF-13的候选预测模型提交。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.

Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.

Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.

Geomagnetic secular variation forecast using the NASA GEMS ensemble Kalman filter: A candidate SV model for IGRF-13.

Abstract: We have produced a 5-year mean secular variation (SV) of the geomagnetic field for the period 2020-2025. We use the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the NASA Goddard geodynamo model and ensemble Kalman filter (EnKF) with 400 ensemble members. Geomagnetic field models are used as observations for the assimilation, including gufm1 (1590-1960), CM4 (1961-2000) and CM6 (2001-2019). The forecast involves a bias correction scheme that assumes that the model bias changes on timescales much longer than the forecast period, so that they can be removed by successive forecast series. The algorithm was validated on the time period 2010-2015 by comparing with CM6 before being applied to the 2020-2025 time period. This forecast has been submitted as a candidate predictive model of IGRF-13 for the period 2020-2025.

Graphical abstract:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth, Planets and Space
Earth, Planets and Space 地学天文-地球科学综合
CiteScore
5.80
自引率
16.70%
发文量
167
期刊介绍: Earth, Planets and Space (EPS) covers scientific articles in Earth and Planetary Sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, including instrumentations. Only new and original contents will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信