S. Nozette, C. L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E. M. Shoemaker
{"title":"克莱门汀双向雷达实验","authors":"S. Nozette, C. L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E. M. Shoemaker","doi":"10.1126/science.274.5292.1495","DOIUrl":null,"url":null,"abstract":"<div >During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, β, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around β = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":null,"pages":null},"PeriodicalIF":44.7000,"publicationDate":"1996-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1126/science.274.5292.1495","citationCount":"439","resultStr":"{\"title\":\"The Clementine Bistatic Radar Experiment\",\"authors\":\"S. Nozette, C. L. Lichtenberg, P. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E. M. Shoemaker\",\"doi\":\"10.1126/science.274.5292.1495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, β, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around β = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":44.7000,\"publicationDate\":\"1996-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1126/science.274.5292.1495\",\"citationCount\":\"439\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.274.5292.1495\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.274.5292.1495","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, β, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around β = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.