{"title":"便携式双金属金属有机框架生物传感器的视觉检测和消除细菌","authors":"Yuting Shang, Gaowa Xing, Haifeng Lin, Shulang Chen, Tianze Xie and Jin-Ming Lin*, ","doi":"10.1021/acs.analchem.3c02841","DOIUrl":null,"url":null,"abstract":"<p >A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a “sense-and-treat” biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal–organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of <i>E. coli</i> O157:H7 in the range of 10<sup>3</sup>–10<sup>8</sup> CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against <i>E. coli</i> O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"95 35","pages":"13368–13375"},"PeriodicalIF":6.7000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portable Biosensor with Bimetallic Metal–Organic Frameworks for Visual Detection and Elimination of Bacteria\",\"authors\":\"Yuting Shang, Gaowa Xing, Haifeng Lin, Shulang Chen, Tianze Xie and Jin-Ming Lin*, \",\"doi\":\"10.1021/acs.analchem.3c02841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a “sense-and-treat” biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal–organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of <i>E. coli</i> O157:H7 in the range of 10<sup>3</sup>–10<sup>8</sup> CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against <i>E. coli</i> O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"95 35\",\"pages\":\"13368–13375\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.3c02841\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.3c02841","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Portable Biosensor with Bimetallic Metal–Organic Frameworks for Visual Detection and Elimination of Bacteria
A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a “sense-and-treat” biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal–organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of E. coli O157:H7 in the range of 103–108 CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against E. coli O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.