Jie Luo, Chenshuo Song, Wenjing Cui, Laichuang Han, Zhemin Zhou
{"title":"柔性区域移位对纳豆激酶稳定性-活性权衡的抵消","authors":"Jie Luo, Chenshuo Song, Wenjing Cui, Laichuang Han, Zhemin Zhou","doi":"10.1016/j.foodchem.2023.136241","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread trade-off between stability and activity severely limits enzyme evolution. Although some progresses have been made to overcome this limitation, the counteraction mechanism for enzyme stability-activity trade-off remains obscure. Here, we clarified the counteraction mechanism of the Nattokinase stability-activity trade-off. A combinatorial mutant M4 was obtained by multi-strategy engineering, exhibiting a 20.7-fold improved half-life; meanwhile, the catalytic efficiency was doubled. Molecular dynamics simulation revealed that an obvious flexible region shifting in the structure of mutant M4 was occurred. The flexible region shifting which contributed to maintain the global structural flexibility, was considered to be the key factor for counteracting the stability-activity trade-off. Further analysis illustrated that the flexible region shifting was driven by region dynamical networks reshaping. This work provided deep insight into the counteraction mechanism of enzyme stability-activity trade-off, suggesting that flexible region shifting would be an effective strategy for enzyme evolution through computational protein engineering.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"423 ","pages":"Article 136241"},"PeriodicalIF":9.8000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting\",\"authors\":\"Jie Luo, Chenshuo Song, Wenjing Cui, Laichuang Han, Zhemin Zhou\",\"doi\":\"10.1016/j.foodchem.2023.136241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread trade-off between stability and activity severely limits enzyme evolution. Although some progresses have been made to overcome this limitation, the counteraction mechanism for enzyme stability-activity trade-off remains obscure. Here, we clarified the counteraction mechanism of the Nattokinase stability-activity trade-off. A combinatorial mutant M4 was obtained by multi-strategy engineering, exhibiting a 20.7-fold improved half-life; meanwhile, the catalytic efficiency was doubled. Molecular dynamics simulation revealed that an obvious flexible region shifting in the structure of mutant M4 was occurred. The flexible region shifting which contributed to maintain the global structural flexibility, was considered to be the key factor for counteracting the stability-activity trade-off. Further analysis illustrated that the flexible region shifting was driven by region dynamical networks reshaping. This work provided deep insight into the counteraction mechanism of enzyme stability-activity trade-off, suggesting that flexible region shifting would be an effective strategy for enzyme evolution through computational protein engineering.</p></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"423 \",\"pages\":\"Article 136241\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814623008592\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814623008592","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting
The widespread trade-off between stability and activity severely limits enzyme evolution. Although some progresses have been made to overcome this limitation, the counteraction mechanism for enzyme stability-activity trade-off remains obscure. Here, we clarified the counteraction mechanism of the Nattokinase stability-activity trade-off. A combinatorial mutant M4 was obtained by multi-strategy engineering, exhibiting a 20.7-fold improved half-life; meanwhile, the catalytic efficiency was doubled. Molecular dynamics simulation revealed that an obvious flexible region shifting in the structure of mutant M4 was occurred. The flexible region shifting which contributed to maintain the global structural flexibility, was considered to be the key factor for counteracting the stability-activity trade-off. Further analysis illustrated that the flexible region shifting was driven by region dynamical networks reshaping. This work provided deep insight into the counteraction mechanism of enzyme stability-activity trade-off, suggesting that flexible region shifting would be an effective strategy for enzyme evolution through computational protein engineering.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.