多发性硬化症中的沉默突触:从突触功能障碍到基于再激活的治疗——对认知和神经可塑性结果的叙述性回顾。

IF 2.3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Zinab Alatawi
{"title":"多发性硬化症中的沉默突触:从突触功能障碍到基于再激活的治疗——对认知和神经可塑性结果的叙述性回顾。","authors":"Zinab Alatawi","doi":"10.1002/dneu.23014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Silent synapses in multiple sclerosis (MS) represent a key yet underexplored concept in the pathology of this disease, playing a crucial role in cognitive impairments and reduced neuroplasticity. These synapses, due to the inactivity of AMPA receptors under pathological conditions, are unable to efficiently transmit neural signals, leading to disrupted neural communication. This dysfunction is particularly influenced by chronic inflammation, alterations in neurotransmitter dynamics, and a reduction in neurotrophic factors in MS patients. One of the key aspects of understanding silent synapses is that they not only have the potential for reactivation, but they can also contribute to the restoration of neural networks by re-establishing neuroplasticity. Recent research has shown that targeted treatments, including activating NMDA receptors, increasing brain-derived neurotrophic factor (BDNF), and using drugs like ketamine, help restore patients’ cognitive function. Apart from pharmacological therapies, non-pharmacological strategies also include cognitive rehabilitation, physical activity, and noninvasive brain stimulation, which might promote synaptic plasticity and consequently quality of life. Therefore, reactivating latent synapses as a novel and interesting therapy strategy could not only improve cognitive performance in MS patients but also open the road for fresh methods to mend the nervous system and increase their quality of life. Though its specific form has not yet been thoroughly investigated, this approach offers great promise to become a viable MS treatment.</p>\n </div>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"85 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silent Synapses in Multiple Sclerosis: From Synaptic Dysfunction to Reactivation-Based Therapies—A Narrative Review of Cognitive and Neuroplasticity Outcomes\",\"authors\":\"Zinab Alatawi\",\"doi\":\"10.1002/dneu.23014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Silent synapses in multiple sclerosis (MS) represent a key yet underexplored concept in the pathology of this disease, playing a crucial role in cognitive impairments and reduced neuroplasticity. These synapses, due to the inactivity of AMPA receptors under pathological conditions, are unable to efficiently transmit neural signals, leading to disrupted neural communication. This dysfunction is particularly influenced by chronic inflammation, alterations in neurotransmitter dynamics, and a reduction in neurotrophic factors in MS patients. One of the key aspects of understanding silent synapses is that they not only have the potential for reactivation, but they can also contribute to the restoration of neural networks by re-establishing neuroplasticity. Recent research has shown that targeted treatments, including activating NMDA receptors, increasing brain-derived neurotrophic factor (BDNF), and using drugs like ketamine, help restore patients’ cognitive function. Apart from pharmacological therapies, non-pharmacological strategies also include cognitive rehabilitation, physical activity, and noninvasive brain stimulation, which might promote synaptic plasticity and consequently quality of life. Therefore, reactivating latent synapses as a novel and interesting therapy strategy could not only improve cognitive performance in MS patients but also open the road for fresh methods to mend the nervous system and increase their quality of life. Though its specific form has not yet been thoroughly investigated, this approach offers great promise to become a viable MS treatment.</p>\\n </div>\",\"PeriodicalId\":11300,\"journal\":{\"name\":\"Developmental Neurobiology\",\"volume\":\"85 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dneu.23014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dneu.23014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)中的沉默突触是该疾病病理学中一个关键但尚未被充分探索的概念,在认知障碍和神经可塑性降低中起着至关重要的作用。这些突触在病理状态下由于AMPA受体不活跃,无法有效传递神经信号,导致神经通讯中断。这种功能障碍特别受慢性炎症、神经递质动力学改变和MS患者神经营养因子减少的影响。理解沉默突触的一个关键方面是,它们不仅具有重新激活的潜力,而且还可以通过重建神经可塑性来促进神经网络的恢复。最近的研究表明,包括激活NMDA受体、增加脑源性神经营养因子(BDNF)和使用氯胺酮等药物在内的靶向治疗有助于恢复患者的认知功能。除药物治疗外,非药物治疗策略还包括认知康复、身体活动和无创脑刺激,这可能会促进突触可塑性,从而提高生活质量。因此,重新激活潜在突触作为一种新颖而有趣的治疗策略,不仅可以改善MS患者的认知能力,而且为修复神经系统和提高生活质量开辟了新的方法。虽然其具体形式尚未被彻底研究,但这种方法有望成为一种可行的多发性硬化症治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silent Synapses in Multiple Sclerosis: From Synaptic Dysfunction to Reactivation-Based Therapies—A Narrative Review of Cognitive and Neuroplasticity Outcomes

Silent Synapses in Multiple Sclerosis: From Synaptic Dysfunction to Reactivation-Based Therapies—A Narrative Review of Cognitive and Neuroplasticity Outcomes

Silent synapses in multiple sclerosis (MS) represent a key yet underexplored concept in the pathology of this disease, playing a crucial role in cognitive impairments and reduced neuroplasticity. These synapses, due to the inactivity of AMPA receptors under pathological conditions, are unable to efficiently transmit neural signals, leading to disrupted neural communication. This dysfunction is particularly influenced by chronic inflammation, alterations in neurotransmitter dynamics, and a reduction in neurotrophic factors in MS patients. One of the key aspects of understanding silent synapses is that they not only have the potential for reactivation, but they can also contribute to the restoration of neural networks by re-establishing neuroplasticity. Recent research has shown that targeted treatments, including activating NMDA receptors, increasing brain-derived neurotrophic factor (BDNF), and using drugs like ketamine, help restore patients’ cognitive function. Apart from pharmacological therapies, non-pharmacological strategies also include cognitive rehabilitation, physical activity, and noninvasive brain stimulation, which might promote synaptic plasticity and consequently quality of life. Therefore, reactivating latent synapses as a novel and interesting therapy strategy could not only improve cognitive performance in MS patients but also open the road for fresh methods to mend the nervous system and increase their quality of life. Though its specific form has not yet been thoroughly investigated, this approach offers great promise to become a viable MS treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Developmental Neurobiology
Developmental Neurobiology 生物-发育生物学
CiteScore
6.50
自引率
0.00%
发文量
45
审稿时长
4-8 weeks
期刊介绍: Developmental Neurobiology (previously the Journal of Neurobiology ) publishes original research articles on development, regeneration, repair and plasticity of the nervous system and on the ontogeny of behavior. High quality contributions in these areas are solicited, with an emphasis on experimental as opposed to purely descriptive work. The Journal also will consider manuscripts reporting novel approaches and techniques for the study of the development of the nervous system as well as occasional special issues on topics of significant current interest. We welcome suggestions on possible topics from our readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信