利用MoTe2光电忆阻器与氧等离子体处理进行传感器内储层计算的生物启发多感官融合

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuang Ge, Qiang Wang, Jingyao Bian, Zhuangzhuang Li, Ye Tao, Meng Qi, Zewei Wang, Siyu Liu, Zhongqiang Wang, Yongxing Zhu, Ya Lin, Xiaoning Zhao, Haiyang Xu and Yichun Liu
{"title":"利用MoTe2光电忆阻器与氧等离子体处理进行传感器内储层计算的生物启发多感官融合","authors":"Shuang Ge, Qiang Wang, Jingyao Bian, Zhuangzhuang Li, Ye Tao, Meng Qi, Zewei Wang, Siyu Liu, Zhongqiang Wang, Yongxing Zhu, Ya Lin, Xiaoning Zhao, Haiyang Xu and Yichun Liu","doi":"10.1039/D5TC02712H","DOIUrl":null,"url":null,"abstract":"<p >Biological multimodal perception systems play a pivotal role in environmental interactions through the sophisticated integration of multisensory information. Inspired by this natural paradigm, we demonstrate a breakthrough two-dimensional MoTe<small><sub>2</sub></small>-based optoelectronic memristor capable of synergistically processing infrared optical and electrical signals in a monolithic device – a critical advancement toward artificial multimodal sensing systems. The developed structure demonstrates superior biorealistic synaptic functionalities, including tunable short-term plasticity, paired-pulse facilitation, and spike-time-dependent plasticity through photoelectronic co-modulation. More significantly, we construct a multimodal reservoir computing architecture that synergistically combines optical and electrical inputs, achieving higher pattern recognition accuracy compared to the single mode. This work establishes a new dimension in neuromorphic hardware design through inherent multimodal signal fusion capabilities. Our findings provide fundamental insights into photoelectronic coupling mechanisms while demonstrating practical pathways toward high-efficiency neuromorphic computing systems with biological sensory integration.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 41","pages":" 21006-21014"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired multisensory fusion using a MoTe2 optoelectronic memristor with oxygen plasma treatment for in-sensor reservoir computing\",\"authors\":\"Shuang Ge, Qiang Wang, Jingyao Bian, Zhuangzhuang Li, Ye Tao, Meng Qi, Zewei Wang, Siyu Liu, Zhongqiang Wang, Yongxing Zhu, Ya Lin, Xiaoning Zhao, Haiyang Xu and Yichun Liu\",\"doi\":\"10.1039/D5TC02712H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biological multimodal perception systems play a pivotal role in environmental interactions through the sophisticated integration of multisensory information. Inspired by this natural paradigm, we demonstrate a breakthrough two-dimensional MoTe<small><sub>2</sub></small>-based optoelectronic memristor capable of synergistically processing infrared optical and electrical signals in a monolithic device – a critical advancement toward artificial multimodal sensing systems. The developed structure demonstrates superior biorealistic synaptic functionalities, including tunable short-term plasticity, paired-pulse facilitation, and spike-time-dependent plasticity through photoelectronic co-modulation. More significantly, we construct a multimodal reservoir computing architecture that synergistically combines optical and electrical inputs, achieving higher pattern recognition accuracy compared to the single mode. This work establishes a new dimension in neuromorphic hardware design through inherent multimodal signal fusion capabilities. Our findings provide fundamental insights into photoelectronic coupling mechanisms while demonstrating practical pathways toward high-efficiency neuromorphic computing systems with biological sensory integration.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 41\",\"pages\":\" 21006-21014\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02712h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02712h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物多模态感知系统通过复杂的多感官信息整合在环境相互作用中发挥关键作用。受这种自然模式的启发,我们展示了一种突破性的基于mote2的二维光电忆阻器,能够在单片器件中协同处理红外光学和电信号-这是人工多模态传感系统的关键进步。所开发的结构显示出优越的生物现实突触功能,包括可调的短期可塑性,配对脉冲促进,以及通过光电共调制的峰值时间依赖性可塑性。更重要的是,我们构建了一个多模态油藏计算架构,该架构协同结合了光和电输入,与单一模式相比,实现了更高的模式识别精度。这项工作通过固有的多模态信号融合能力在神经形态硬件设计中建立了一个新的维度。我们的发现为光电耦合机制提供了基本的见解,同时展示了具有生物感觉整合的高效神经形态计算系统的实际途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired multisensory fusion using a MoTe2 optoelectronic memristor with oxygen plasma treatment for in-sensor reservoir computing

Bioinspired multisensory fusion using a MoTe2 optoelectronic memristor with oxygen plasma treatment for in-sensor reservoir computing

Biological multimodal perception systems play a pivotal role in environmental interactions through the sophisticated integration of multisensory information. Inspired by this natural paradigm, we demonstrate a breakthrough two-dimensional MoTe2-based optoelectronic memristor capable of synergistically processing infrared optical and electrical signals in a monolithic device – a critical advancement toward artificial multimodal sensing systems. The developed structure demonstrates superior biorealistic synaptic functionalities, including tunable short-term plasticity, paired-pulse facilitation, and spike-time-dependent plasticity through photoelectronic co-modulation. More significantly, we construct a multimodal reservoir computing architecture that synergistically combines optical and electrical inputs, achieving higher pattern recognition accuracy compared to the single mode. This work establishes a new dimension in neuromorphic hardware design through inherent multimodal signal fusion capabilities. Our findings provide fundamental insights into photoelectronic coupling mechanisms while demonstrating practical pathways toward high-efficiency neuromorphic computing systems with biological sensory integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信