Christopher P. Anderson, Giovanni Scuri, Aaron Chan, Sungjun Eun, Alexander D. White, Geun Ho Ahn, Christine Jilly, Amir Safavi-Naeini, Kasper Van Gasse, Lu Li, Jelena Vučković
{"title":"量子临界电光和压电非线性","authors":"Christopher P. Anderson, Giovanni Scuri, Aaron Chan, Sungjun Eun, Alexander D. White, Geun Ho Ahn, Christine Jilly, Amir Safavi-Naeini, Kasper Van Gasse, Lu Li, Jelena Vučković","doi":"10.1126/science.adx8657","DOIUrl":null,"url":null,"abstract":"<div >Although electro-optic (EO) nonlinearities are essential for many quantum and classical photonics applications, a major challenge is inefficient modulation in cryogenic environments. Guided by the connection between phase transitions and nonlinearity, we identify the quantum paraelectric perovskite SrTiO<sub>3</sub> as a strong cryogenic EO [>500 picometers per volt (pm/V)] and piezo-electric material (>90 picocoulombs per newton) at <i>T </i>= 5 K, at frequencies to at least 1 megahertz. Furthermore, by tuning SrTiO<sub>3</sub> toward quantum criticality, we more than double the EO and piezo-electric effects, demonstrating a linear Pockels coefficient above 1000 pm/V. Our results probe the link between quantum phase transitions, dielectric susceptibility, and nonlinearity, unlocking opportunities in cryogenic optical and mechanical systems and providing a framework for discovering new nonlinear materials.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"390 6771","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum critical electro-optic and piezo-electric nonlinearities\",\"authors\":\"Christopher P. Anderson, Giovanni Scuri, Aaron Chan, Sungjun Eun, Alexander D. White, Geun Ho Ahn, Christine Jilly, Amir Safavi-Naeini, Kasper Van Gasse, Lu Li, Jelena Vučković\",\"doi\":\"10.1126/science.adx8657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Although electro-optic (EO) nonlinearities are essential for many quantum and classical photonics applications, a major challenge is inefficient modulation in cryogenic environments. Guided by the connection between phase transitions and nonlinearity, we identify the quantum paraelectric perovskite SrTiO<sub>3</sub> as a strong cryogenic EO [>500 picometers per volt (pm/V)] and piezo-electric material (>90 picocoulombs per newton) at <i>T </i>= 5 K, at frequencies to at least 1 megahertz. Furthermore, by tuning SrTiO<sub>3</sub> toward quantum criticality, we more than double the EO and piezo-electric effects, demonstrating a linear Pockels coefficient above 1000 pm/V. Our results probe the link between quantum phase transitions, dielectric susceptibility, and nonlinearity, unlocking opportunities in cryogenic optical and mechanical systems and providing a framework for discovering new nonlinear materials.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"390 6771\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adx8657\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adx8657","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Quantum critical electro-optic and piezo-electric nonlinearities
Although electro-optic (EO) nonlinearities are essential for many quantum and classical photonics applications, a major challenge is inefficient modulation in cryogenic environments. Guided by the connection between phase transitions and nonlinearity, we identify the quantum paraelectric perovskite SrTiO3 as a strong cryogenic EO [>500 picometers per volt (pm/V)] and piezo-electric material (>90 picocoulombs per newton) at T = 5 K, at frequencies to at least 1 megahertz. Furthermore, by tuning SrTiO3 toward quantum criticality, we more than double the EO and piezo-electric effects, demonstrating a linear Pockels coefficient above 1000 pm/V. Our results probe the link between quantum phase transitions, dielectric susceptibility, and nonlinearity, unlocking opportunities in cryogenic optical and mechanical systems and providing a framework for discovering new nonlinear materials.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.