Hannah E Snoke, Stephanie M Reeve, Suresh Dharuman, Miranda J Wallace, Victoria C Loudon, Ying Zhao, John J Bowling, Patricia A Murphy, Brett Waddell, Robin B Lee, Jürgen B Bulitta, Richard E Lee
{"title":"通过增加革兰氏阴性菌中二氢蝶呤合酶蝶呤结合位点的全细胞靶标接合来开发嘧啶吡啶嘧啶类似物。","authors":"Hannah E Snoke, Stephanie M Reeve, Suresh Dharuman, Miranda J Wallace, Victoria C Loudon, Ying Zhao, John J Bowling, Patricia A Murphy, Brett Waddell, Robin B Lee, Jürgen B Bulitta, Richard E Lee","doi":"10.1021/acsinfecdis.5c00635","DOIUrl":null,"url":null,"abstract":"<p><p>Dihydropteroate synthase (DHPS) is a critical enzyme in the folate biosynthetic pathway of bacteria, fungi, and protozoans. Sulfonamides successfully target the <i>p-</i>aminobenzoic acid (<i>p</i>ABA) binding site of DHPS, forming a false product that obstructs the formation of 7,8-dihydropteroate and disrupts subsequent reactions in the pathway. Pyrimido[4,5-<i>c</i>]pyridazine-based inhibitors target the pterin binding site of DHPS, demonstrating high target affinity but minimal antimicrobial activity, which has previously been attributed to poor permeability without detailed analysis. In this study, we investigate the permeability limitations of our pyrimido pyridazine series in Gram-negative bacteria within the context of whole cell target engagement and cellular accumulation. To evaluate their whole cell target engagement against <i>Escherichia coli</i> DHPS (<i>Ec</i>DHPS), we developed a robust luminescence-based HiBiT cellular thermal shift assay and combined it with surface plasmon resonance and an LC-MS/MS-based accumulation assay. This orthogonal assay platform was used to reevaluate the SAR of our Legacy pyrimido pyridazine compound series against <i>Ec</i>DHPS and to facilitate the design of an exploratory series of compounds with improved permeability. From this series, we found that the removal or replacement of the negatively charged carboxylic acid pyrimido pyridazine side chain with a thiotetrazole or a nitrile group resulted in increased accumulation, improved whole cell target engagement, and moderate antimicrobial activity against <i>E. coli</i>.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Pyrimido Pyridazine Analogs through Increased Whole Cell Target Engagement of the Dihydropteroate Synthase Pterin Binding Site in Gram-Negative Bacteria.\",\"authors\":\"Hannah E Snoke, Stephanie M Reeve, Suresh Dharuman, Miranda J Wallace, Victoria C Loudon, Ying Zhao, John J Bowling, Patricia A Murphy, Brett Waddell, Robin B Lee, Jürgen B Bulitta, Richard E Lee\",\"doi\":\"10.1021/acsinfecdis.5c00635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dihydropteroate synthase (DHPS) is a critical enzyme in the folate biosynthetic pathway of bacteria, fungi, and protozoans. Sulfonamides successfully target the <i>p-</i>aminobenzoic acid (<i>p</i>ABA) binding site of DHPS, forming a false product that obstructs the formation of 7,8-dihydropteroate and disrupts subsequent reactions in the pathway. Pyrimido[4,5-<i>c</i>]pyridazine-based inhibitors target the pterin binding site of DHPS, demonstrating high target affinity but minimal antimicrobial activity, which has previously been attributed to poor permeability without detailed analysis. In this study, we investigate the permeability limitations of our pyrimido pyridazine series in Gram-negative bacteria within the context of whole cell target engagement and cellular accumulation. To evaluate their whole cell target engagement against <i>Escherichia coli</i> DHPS (<i>Ec</i>DHPS), we developed a robust luminescence-based HiBiT cellular thermal shift assay and combined it with surface plasmon resonance and an LC-MS/MS-based accumulation assay. This orthogonal assay platform was used to reevaluate the SAR of our Legacy pyrimido pyridazine compound series against <i>Ec</i>DHPS and to facilitate the design of an exploratory series of compounds with improved permeability. From this series, we found that the removal or replacement of the negatively charged carboxylic acid pyrimido pyridazine side chain with a thiotetrazole or a nitrile group resulted in increased accumulation, improved whole cell target engagement, and moderate antimicrobial activity against <i>E. coli</i>.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00635\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00635","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Development of Pyrimido Pyridazine Analogs through Increased Whole Cell Target Engagement of the Dihydropteroate Synthase Pterin Binding Site in Gram-Negative Bacteria.
Dihydropteroate synthase (DHPS) is a critical enzyme in the folate biosynthetic pathway of bacteria, fungi, and protozoans. Sulfonamides successfully target the p-aminobenzoic acid (pABA) binding site of DHPS, forming a false product that obstructs the formation of 7,8-dihydropteroate and disrupts subsequent reactions in the pathway. Pyrimido[4,5-c]pyridazine-based inhibitors target the pterin binding site of DHPS, demonstrating high target affinity but minimal antimicrobial activity, which has previously been attributed to poor permeability without detailed analysis. In this study, we investigate the permeability limitations of our pyrimido pyridazine series in Gram-negative bacteria within the context of whole cell target engagement and cellular accumulation. To evaluate their whole cell target engagement against Escherichia coli DHPS (EcDHPS), we developed a robust luminescence-based HiBiT cellular thermal shift assay and combined it with surface plasmon resonance and an LC-MS/MS-based accumulation assay. This orthogonal assay platform was used to reevaluate the SAR of our Legacy pyrimido pyridazine compound series against EcDHPS and to facilitate the design of an exploratory series of compounds with improved permeability. From this series, we found that the removal or replacement of the negatively charged carboxylic acid pyrimido pyridazine side chain with a thiotetrazole or a nitrile group resulted in increased accumulation, improved whole cell target engagement, and moderate antimicrobial activity against E. coli.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.