一种基于c++注释的领域特定语言,用于表达支持CPU和GPU的流和数据并行性

IF 1.8 3区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Gabriell Araujo , Dinei A. Rockenbach , Júnior Löff , Dalvan Griebler , Luiz G. Fernandes
{"title":"一种基于c++注释的领域特定语言,用于表达支持CPU和GPU的流和数据并行性","authors":"Gabriell Araujo ,&nbsp;Dinei A. Rockenbach ,&nbsp;Júnior Löff ,&nbsp;Dalvan Griebler ,&nbsp;Luiz G. Fernandes","doi":"10.1016/j.cola.2025.101369","DOIUrl":null,"url":null,"abstract":"<div><div>Graphics processing units (GPUs) and central processing units (CPUs) provide massive parallel computing in our modern computer systems (e.g., servers, desktops, smartphones, and laptops), and efficiently utilizing their processing power requires expertise in parallel programming. Mainly, domain-specific languages (DSLs) address this challenge by improving productivity and abstractions. SPar is a high-level DSL that promotes parallel programming abstractions for stream and data parallelism using C++ attribute annotations for serial code. Unlike existing solutions, SPar eliminates the need to manually implement low-level mechanisms to leverage stream and data parallelism on heterogeneous systems. In this article, we design an extended version of the language and compiler algorithm for GPU code generation. We newly offer a single parallel programming model targeting CPUs and GPUs to exploit stream and data parallelism. The experiments indicated performance improvement compared with previous versions of SPar and achieved performance comparable to handwritten code using lower-level programming abstractions in specific scenarios.</div></div>","PeriodicalId":48552,"journal":{"name":"Journal of Computer Languages","volume":"85 ","pages":"Article 101369"},"PeriodicalIF":1.8000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A C++ annotation-based domain-specific language for expressing stream and data parallelism supporting CPU and GPU\",\"authors\":\"Gabriell Araujo ,&nbsp;Dinei A. Rockenbach ,&nbsp;Júnior Löff ,&nbsp;Dalvan Griebler ,&nbsp;Luiz G. Fernandes\",\"doi\":\"10.1016/j.cola.2025.101369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphics processing units (GPUs) and central processing units (CPUs) provide massive parallel computing in our modern computer systems (e.g., servers, desktops, smartphones, and laptops), and efficiently utilizing their processing power requires expertise in parallel programming. Mainly, domain-specific languages (DSLs) address this challenge by improving productivity and abstractions. SPar is a high-level DSL that promotes parallel programming abstractions for stream and data parallelism using C++ attribute annotations for serial code. Unlike existing solutions, SPar eliminates the need to manually implement low-level mechanisms to leverage stream and data parallelism on heterogeneous systems. In this article, we design an extended version of the language and compiler algorithm for GPU code generation. We newly offer a single parallel programming model targeting CPUs and GPUs to exploit stream and data parallelism. The experiments indicated performance improvement compared with previous versions of SPar and achieved performance comparable to handwritten code using lower-level programming abstractions in specific scenarios.</div></div>\",\"PeriodicalId\":48552,\"journal\":{\"name\":\"Journal of Computer Languages\",\"volume\":\"85 \",\"pages\":\"Article 101369\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Languages\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590118425000553\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Languages","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590118425000553","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

图形处理单元(gpu)和中央处理单元(cpu)在我们的现代计算机系统(例如,服务器、台式机、智能手机和笔记本电脑)中提供了大量并行计算,有效地利用它们的处理能力需要并行编程方面的专业知识。主要是,领域特定语言(dsl)通过提高生产力和抽象来解决这一挑战。SPar是一种高级DSL,它通过对串行代码使用c++属性注释来促进流和数据并行性的并行编程抽象。与现有的解决方案不同,SPar不需要手动实现低级机制来利用异构系统上的流和数据并行性。在本文中,我们设计了用于GPU代码生成的语言和编译算法的扩展版本。我们最近提供了一种针对cpu和gpu的单一并行编程模型,以利用流和数据并行性。实验表明,与以前版本的SPar相比,性能有所提高,并且在特定场景中实现了与使用低级编程抽象的手写代码相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A C++ annotation-based domain-specific language for expressing stream and data parallelism supporting CPU and GPU
Graphics processing units (GPUs) and central processing units (CPUs) provide massive parallel computing in our modern computer systems (e.g., servers, desktops, smartphones, and laptops), and efficiently utilizing their processing power requires expertise in parallel programming. Mainly, domain-specific languages (DSLs) address this challenge by improving productivity and abstractions. SPar is a high-level DSL that promotes parallel programming abstractions for stream and data parallelism using C++ attribute annotations for serial code. Unlike existing solutions, SPar eliminates the need to manually implement low-level mechanisms to leverage stream and data parallelism on heterogeneous systems. In this article, we design an extended version of the language and compiler algorithm for GPU code generation. We newly offer a single parallel programming model targeting CPUs and GPUs to exploit stream and data parallelism. The experiments indicated performance improvement compared with previous versions of SPar and achieved performance comparable to handwritten code using lower-level programming abstractions in specific scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Languages
Journal of Computer Languages Computer Science-Computer Networks and Communications
CiteScore
5.00
自引率
13.60%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信