GaN模板上沉积AlGaN膜的分子动力学模拟:揭示温度和Al/Ga通量比在生长机制中的作用

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yunzhou Liu , Shihan Xu , Kang Zhang , Hualong Wu , Qiao Wang , Qianguang Liao , Dan Lin , Ping Xu , Jinhua Hu , Pinghuan Zhuo , Yelin Li , Chenguang He
{"title":"GaN模板上沉积AlGaN膜的分子动力学模拟:揭示温度和Al/Ga通量比在生长机制中的作用","authors":"Yunzhou Liu ,&nbsp;Shihan Xu ,&nbsp;Kang Zhang ,&nbsp;Hualong Wu ,&nbsp;Qiao Wang ,&nbsp;Qianguang Liao ,&nbsp;Dan Lin ,&nbsp;Ping Xu ,&nbsp;Jinhua Hu ,&nbsp;Pinghuan Zhuo ,&nbsp;Yelin Li ,&nbsp;Chenguang He","doi":"10.1016/j.mssp.2025.110163","DOIUrl":null,"url":null,"abstract":"<div><div>AlGaN/GaN heterostructures are cornerstone materials for high-performance devices like High Electron Mobility Transistors (HEMTs), yet their fabrication remains largely empirical. A critical bottleneck is the lack of atomic-scale theoretical frameworks to clarify how deposition parameters tune key heterostructure properties—dislocation density, structural composition, surface roughness, in-plane stress—hindering the rational optimization of device quality. To fill this gap, we present a molecular dynamics (MD)-based atomic-scale investigation of AlGaN deposition on GaN templates, aiming to uncover the unelucidated mechanisms that quantify the correlative trends between such parameters and properties at the atomic level. Key findings include three fabrication-relevant insights: 1) For temperatures (1200–1800 K), we identified 1600 K as the optimal value, featuring peak crystalline quality and monotonic roughness reduction—driven by enhanced adatom mobility. Our work clarifies this mobility's synchronous regulation of the two key properties in systems like AlGaN/GaN heterostructures, offering new atomic-scale insights into their correlation. 2) For Al/Ga flux ratios (1:4 to 3:1), Al/Ga = 1:3 yields highest crystallinity; Al/Ga ≥1 surfaces are smoother than Al/Ga &lt;1. This divergence comes from clarified atomic process: Ga-rich conditions promote Ga desorption, while higher Al suppresses it—unhighlighted before. 3) We confirmed that in-plane tensile stress (arising from lattice mismatch) is dominant; further, our molecular dynamics (MD) simulations uniquely quantify how temperature and flux modulate the stress magnitude at the atomic interface. This work's innovation is translating atomic deposition dynamics into actionable AlGaN/GaN guidelines—addressing trial-and-error/theory disconnect. Findings guide parameter optimization, accelerating high-quality heterostructure synthesis for next-generation HEMTs.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"202 ","pages":"Article 110163"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulation of AlGaN film deposition on GaN template: unraveling the roles of temperature and Al/Ga flux ratio in growth mechanism\",\"authors\":\"Yunzhou Liu ,&nbsp;Shihan Xu ,&nbsp;Kang Zhang ,&nbsp;Hualong Wu ,&nbsp;Qiao Wang ,&nbsp;Qianguang Liao ,&nbsp;Dan Lin ,&nbsp;Ping Xu ,&nbsp;Jinhua Hu ,&nbsp;Pinghuan Zhuo ,&nbsp;Yelin Li ,&nbsp;Chenguang He\",\"doi\":\"10.1016/j.mssp.2025.110163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>AlGaN/GaN heterostructures are cornerstone materials for high-performance devices like High Electron Mobility Transistors (HEMTs), yet their fabrication remains largely empirical. A critical bottleneck is the lack of atomic-scale theoretical frameworks to clarify how deposition parameters tune key heterostructure properties—dislocation density, structural composition, surface roughness, in-plane stress—hindering the rational optimization of device quality. To fill this gap, we present a molecular dynamics (MD)-based atomic-scale investigation of AlGaN deposition on GaN templates, aiming to uncover the unelucidated mechanisms that quantify the correlative trends between such parameters and properties at the atomic level. Key findings include three fabrication-relevant insights: 1) For temperatures (1200–1800 K), we identified 1600 K as the optimal value, featuring peak crystalline quality and monotonic roughness reduction—driven by enhanced adatom mobility. Our work clarifies this mobility's synchronous regulation of the two key properties in systems like AlGaN/GaN heterostructures, offering new atomic-scale insights into their correlation. 2) For Al/Ga flux ratios (1:4 to 3:1), Al/Ga = 1:3 yields highest crystallinity; Al/Ga ≥1 surfaces are smoother than Al/Ga &lt;1. This divergence comes from clarified atomic process: Ga-rich conditions promote Ga desorption, while higher Al suppresses it—unhighlighted before. 3) We confirmed that in-plane tensile stress (arising from lattice mismatch) is dominant; further, our molecular dynamics (MD) simulations uniquely quantify how temperature and flux modulate the stress magnitude at the atomic interface. This work's innovation is translating atomic deposition dynamics into actionable AlGaN/GaN guidelines—addressing trial-and-error/theory disconnect. Findings guide parameter optimization, accelerating high-quality heterostructure synthesis for next-generation HEMTs.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"202 \",\"pages\":\"Article 110163\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125009011\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125009011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

AlGaN/GaN异质结构是高性能器件(如高电子迁移率晶体管(hemt))的基础材料,但它们的制造在很大程度上仍然是经验主义的。一个关键的瓶颈是缺乏原子尺度的理论框架来阐明沉积参数如何调节关键异质结构性质-位错密度,结构成分,表面粗糙度,面内应力-阻碍了器件质量的合理优化。为了填补这一空白,我们提出了一项基于分子动力学(MD)的GaN模板上AlGaN沉积的原子尺度研究,旨在揭示在原子水平上量化这些参数和性质之间相关趋势的尚未阐明的机制。主要发现包括三个与制造相关的见解:1)对于温度(1200-1800 K),我们确定1600 K为最佳值,具有峰值晶体质量和单调粗糙度降低,这是由增强的吸附原子迁移率驱动的。我们的工作阐明了这种迁移率对AlGaN/GaN异质结构等系统中两个关键特性的同步调节,为它们之间的相关性提供了新的原子尺度的见解。2)当Al/Ga通量比为1:4 ~ 3:1时,Al/Ga = 1:3结晶度最高;Al/Ga≥1的表面比Al/Ga <;1光滑。这种差异来自于澄清的原子过程:富Ga条件促进Ga的解吸,而高Al条件抑制Ga的解吸——之前没有强调过。3)我们确认平面内拉应力(由晶格错配引起)是主要的;此外,我们的分子动力学(MD)模拟独特地量化了温度和通量如何调节原子界面处的应力大小。这项工作的创新之处在于将原子沉积动力学转化为可操作的AlGaN/GaN指南-解决试错/理论脱节问题。研究结果指导了参数优化,加速了下一代hemt的高质量异质结构合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular dynamics simulation of AlGaN film deposition on GaN template: unraveling the roles of temperature and Al/Ga flux ratio in growth mechanism
AlGaN/GaN heterostructures are cornerstone materials for high-performance devices like High Electron Mobility Transistors (HEMTs), yet their fabrication remains largely empirical. A critical bottleneck is the lack of atomic-scale theoretical frameworks to clarify how deposition parameters tune key heterostructure properties—dislocation density, structural composition, surface roughness, in-plane stress—hindering the rational optimization of device quality. To fill this gap, we present a molecular dynamics (MD)-based atomic-scale investigation of AlGaN deposition on GaN templates, aiming to uncover the unelucidated mechanisms that quantify the correlative trends between such parameters and properties at the atomic level. Key findings include three fabrication-relevant insights: 1) For temperatures (1200–1800 K), we identified 1600 K as the optimal value, featuring peak crystalline quality and monotonic roughness reduction—driven by enhanced adatom mobility. Our work clarifies this mobility's synchronous regulation of the two key properties in systems like AlGaN/GaN heterostructures, offering new atomic-scale insights into their correlation. 2) For Al/Ga flux ratios (1:4 to 3:1), Al/Ga = 1:3 yields highest crystallinity; Al/Ga ≥1 surfaces are smoother than Al/Ga <1. This divergence comes from clarified atomic process: Ga-rich conditions promote Ga desorption, while higher Al suppresses it—unhighlighted before. 3) We confirmed that in-plane tensile stress (arising from lattice mismatch) is dominant; further, our molecular dynamics (MD) simulations uniquely quantify how temperature and flux modulate the stress magnitude at the atomic interface. This work's innovation is translating atomic deposition dynamics into actionable AlGaN/GaN guidelines—addressing trial-and-error/theory disconnect. Findings guide parameter optimization, accelerating high-quality heterostructure synthesis for next-generation HEMTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信