石墨烯纳米板/α-Fe2O3集成碳纤维基电磁干扰屏蔽和微波吸收复合材料

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rajib Barik, Ganeswar Nath
{"title":"石墨烯纳米板/α-Fe2O3集成碳纤维基电磁干扰屏蔽和微波吸收复合材料","authors":"Rajib Barik,&nbsp;Ganeswar Nath","doi":"10.1016/j.mssp.2025.110157","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the rising demand for highly effective electromagnetic interference (EMI) shielding or microwave absorbing material, the study presents the development of a multifunctional epoxy based composite reinforced with chopped carbon fibers (CCF), graphene nanoplatelet (GNP) and hematite(α-Fe<sub>2</sub>O<sub>3</sub>). The fabrication approach, involving surface functionalization, solvent-assisted dispersion, and ultrasonication, enabled uniform filler integration and strong interfacial bonding. The hybrid architecture synergistically combines the high electrical conductivity of CCF, the interfacial polarization of GNP, and the magnetic characteristics of α-Fe<sub>2</sub>O<sub>3</sub>, thereby activating multiple attenuation mechanisms. Thermal analysis confirmed excellent thermal stability with a dominant decomposition transition at ∼550 °C, supporting its suitability for high-temperature electromagnetic applications. Among the formulations, the CF5G2.5F2.5 (epoxy 90 % + CCF 5 % + GNP 2.5 % + α-Fe<sub>2</sub>O<sub>3</sub> 2.5 %) hybrid composite demonstrated electrical conductivity (0.76 Sm<sup>-1</sup> to 1.21 Sm<sup>-1</sup>), skin depth (5.56 μm–3.76 μm), attenuation co-efficient (127.80 Npm<sup>−1</sup> to 276.17 Npm<sup>−1</sup>), leading to result in superior microwave attenuation with a minimum reflection loss of −33.5 dB at 12.4 GHz, corresponding to &gt;99.9 % absorption and with an effective absorption bandwidth of ∼4.2 GHz at 3 mm thickness, along with a maximum shielding effectiveness of 44.81 dB. These properties were attributed to balanced dielectric and magnetic contributions, optimized impedance matching (≈0.95 at 12.4 GHz), and enhanced attenuation coefficients. The study also reveals that permittivity, permeability, can be precisely tailored through filler ratios to tune performance. The work underscores a scalable and customizable strategy for designing high performance EMI shielding and microwave absorbing materials, particularly suited for aerospace, defense, and next generation communication systems.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"202 ","pages":"Article 110157"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene nanoplatelet/α-Fe2O3 integrated carbon fiber based composites for electromagnetic interference shielding and microwave absorption\",\"authors\":\"Rajib Barik,&nbsp;Ganeswar Nath\",\"doi\":\"10.1016/j.mssp.2025.110157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the rising demand for highly effective electromagnetic interference (EMI) shielding or microwave absorbing material, the study presents the development of a multifunctional epoxy based composite reinforced with chopped carbon fibers (CCF), graphene nanoplatelet (GNP) and hematite(α-Fe<sub>2</sub>O<sub>3</sub>). The fabrication approach, involving surface functionalization, solvent-assisted dispersion, and ultrasonication, enabled uniform filler integration and strong interfacial bonding. The hybrid architecture synergistically combines the high electrical conductivity of CCF, the interfacial polarization of GNP, and the magnetic characteristics of α-Fe<sub>2</sub>O<sub>3</sub>, thereby activating multiple attenuation mechanisms. Thermal analysis confirmed excellent thermal stability with a dominant decomposition transition at ∼550 °C, supporting its suitability for high-temperature electromagnetic applications. Among the formulations, the CF5G2.5F2.5 (epoxy 90 % + CCF 5 % + GNP 2.5 % + α-Fe<sub>2</sub>O<sub>3</sub> 2.5 %) hybrid composite demonstrated electrical conductivity (0.76 Sm<sup>-1</sup> to 1.21 Sm<sup>-1</sup>), skin depth (5.56 μm–3.76 μm), attenuation co-efficient (127.80 Npm<sup>−1</sup> to 276.17 Npm<sup>−1</sup>), leading to result in superior microwave attenuation with a minimum reflection loss of −33.5 dB at 12.4 GHz, corresponding to &gt;99.9 % absorption and with an effective absorption bandwidth of ∼4.2 GHz at 3 mm thickness, along with a maximum shielding effectiveness of 44.81 dB. These properties were attributed to balanced dielectric and magnetic contributions, optimized impedance matching (≈0.95 at 12.4 GHz), and enhanced attenuation coefficients. The study also reveals that permittivity, permeability, can be precisely tailored through filler ratios to tune performance. The work underscores a scalable and customizable strategy for designing high performance EMI shielding and microwave absorbing materials, particularly suited for aerospace, defense, and next generation communication systems.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"202 \",\"pages\":\"Article 110157\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125008959\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008959","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了满足对高效电磁干扰(EMI)屏蔽或微波吸收材料日益增长的需求,本研究提出了一种以短切碳纤维(CCF)、石墨烯纳米板(GNP)和赤铁矿(α-Fe2O3)为增强材料的多功能环氧基复合材料的开发。该制备方法包括表面功能化、溶剂辅助分散和超声波处理,实现了均匀的填料集成和强界面键合。混合结构协同结合了CCF的高导电性、GNP的界面极化和α-Fe2O3的磁性,从而激活了多种衰减机制。热分析证实其具有优异的热稳定性,在~ 550°C时具有主要的分解转变,支持其适用于高温电磁应用。其中,CF5G2.5F2.5(环氧树脂90% + CCF 5% + GNP 2.5% + α-Fe2O3 2.5%)复合材料具有良好的电导率(0.76 Sm-1 ~ 1.21 Sm-1)、集皮深度(5.56 μm - 3.76 μm)、衰减系数(127.80 Npm -1 ~ 276.17 Npm -1),在12.4 GHz时的最小反射损耗为- 33.5 dB,相当于99.9%的吸收,在3 mm厚度时的有效吸收带宽为~ 4.2 GHz。最大屏蔽效能为44.81 dB。这些特性归因于平衡的介电和磁贡献、优化的阻抗匹配(12.4 GHz≈0.95)和增强的衰减系数。该研究还表明,介电常数和渗透率可以通过填料比例精确调整,以调整性能。这项工作强调了设计高性能EMI屏蔽和微波吸收材料的可扩展和可定制策略,特别适用于航空航天,国防和下一代通信系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Graphene nanoplatelet/α-Fe2O3 integrated carbon fiber based composites for electromagnetic interference shielding and microwave absorption

Graphene nanoplatelet/α-Fe2O3 integrated carbon fiber based composites for electromagnetic interference shielding and microwave absorption
In response to the rising demand for highly effective electromagnetic interference (EMI) shielding or microwave absorbing material, the study presents the development of a multifunctional epoxy based composite reinforced with chopped carbon fibers (CCF), graphene nanoplatelet (GNP) and hematite(α-Fe2O3). The fabrication approach, involving surface functionalization, solvent-assisted dispersion, and ultrasonication, enabled uniform filler integration and strong interfacial bonding. The hybrid architecture synergistically combines the high electrical conductivity of CCF, the interfacial polarization of GNP, and the magnetic characteristics of α-Fe2O3, thereby activating multiple attenuation mechanisms. Thermal analysis confirmed excellent thermal stability with a dominant decomposition transition at ∼550 °C, supporting its suitability for high-temperature electromagnetic applications. Among the formulations, the CF5G2.5F2.5 (epoxy 90 % + CCF 5 % + GNP 2.5 % + α-Fe2O3 2.5 %) hybrid composite demonstrated electrical conductivity (0.76 Sm-1 to 1.21 Sm-1), skin depth (5.56 μm–3.76 μm), attenuation co-efficient (127.80 Npm−1 to 276.17 Npm−1), leading to result in superior microwave attenuation with a minimum reflection loss of −33.5 dB at 12.4 GHz, corresponding to >99.9 % absorption and with an effective absorption bandwidth of ∼4.2 GHz at 3 mm thickness, along with a maximum shielding effectiveness of 44.81 dB. These properties were attributed to balanced dielectric and magnetic contributions, optimized impedance matching (≈0.95 at 12.4 GHz), and enhanced attenuation coefficients. The study also reveals that permittivity, permeability, can be precisely tailored through filler ratios to tune performance. The work underscores a scalable and customizable strategy for designing high performance EMI shielding and microwave absorbing materials, particularly suited for aerospace, defense, and next generation communication systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信