Ni-Pd-CNT纳米合金掩膜上生长无裂纹α-Ga2O3厚膜

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
An-Na Cha , Gieop Lee , Hyunggu Kim , Chaewon Seong , Hyojung Bae , Hokyun Rho , Vishal Burungale , Young-Boo Moon , Jun-Seok Ha
{"title":"Ni-Pd-CNT纳米合金掩膜上生长无裂纹α-Ga2O3厚膜","authors":"An-Na Cha ,&nbsp;Gieop Lee ,&nbsp;Hyunggu Kim ,&nbsp;Chaewon Seong ,&nbsp;Hyojung Bae ,&nbsp;Hokyun Rho ,&nbsp;Vishal Burungale ,&nbsp;Young-Boo Moon ,&nbsp;Jun-Seok Ha","doi":"10.1016/j.mssp.2025.110144","DOIUrl":null,"url":null,"abstract":"<div><div>We report a Ni–Pd–CNT-based nanoalloy mask that improves the crystalline quality of α-Ga<sub>2</sub>O<sub>3</sub> epilayers grown via halide vapor phase epitaxy (HVPE). Conventional heteroepitaxy of α-Ga<sub>2</sub>O<sub>3</sub> on sapphire substrates typically results in high dislocation densities due to lattice and thermal expansion mismatches. To address this problem, a Ni–Pd–CNT nanoalloy layer was deposited on a (0001)-oriented α-Ga<sub>2</sub>O<sub>3</sub> buffer layer using electroless plating and spray coating, and α-Ga<sub>2</sub>O<sub>3</sub> was regrown for 15 min. Among the plating durations tested (20, 40, and 60 s), the 40 s condition yielded the thickest epilayer (∼11 μm), the lowest etch pit density (∼4.8 × 10<sup>7</sup> cm<sup>−2</sup>), and the narrowest X-ray diffraction rocking curve for the asymmetric (10–14) reflection.</div><div>AFM and SEM analyses confirmed improved surface uniformity and reduced tilting of seed crystals under these conditions. All samples exhibited high optical transmittance (&gt;80 %) in the visible region and a direct bandgap of ∼5.13 eV, which indicates that the optical properties remained stable regardless of the Ni content. These results show that the Ni–Pd–CNT-assisted nano-epitaxial lateral overgrowth (nano-ELOG) approach effectively reduces threading dislocation density while preserving wide bandgap transparency. This method offers a low-cost, scalable route for producing high-quality α-Ga<sub>2</sub>O<sub>3</sub>, with strong potential for next-generation power electronics and UV optoelectronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"202 ","pages":"Article 110144"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack-free thick α-Ga2O3 films grown on Ni–Pd-CNT nanoalloy masks\",\"authors\":\"An-Na Cha ,&nbsp;Gieop Lee ,&nbsp;Hyunggu Kim ,&nbsp;Chaewon Seong ,&nbsp;Hyojung Bae ,&nbsp;Hokyun Rho ,&nbsp;Vishal Burungale ,&nbsp;Young-Boo Moon ,&nbsp;Jun-Seok Ha\",\"doi\":\"10.1016/j.mssp.2025.110144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report a Ni–Pd–CNT-based nanoalloy mask that improves the crystalline quality of α-Ga<sub>2</sub>O<sub>3</sub> epilayers grown via halide vapor phase epitaxy (HVPE). Conventional heteroepitaxy of α-Ga<sub>2</sub>O<sub>3</sub> on sapphire substrates typically results in high dislocation densities due to lattice and thermal expansion mismatches. To address this problem, a Ni–Pd–CNT nanoalloy layer was deposited on a (0001)-oriented α-Ga<sub>2</sub>O<sub>3</sub> buffer layer using electroless plating and spray coating, and α-Ga<sub>2</sub>O<sub>3</sub> was regrown for 15 min. Among the plating durations tested (20, 40, and 60 s), the 40 s condition yielded the thickest epilayer (∼11 μm), the lowest etch pit density (∼4.8 × 10<sup>7</sup> cm<sup>−2</sup>), and the narrowest X-ray diffraction rocking curve for the asymmetric (10–14) reflection.</div><div>AFM and SEM analyses confirmed improved surface uniformity and reduced tilting of seed crystals under these conditions. All samples exhibited high optical transmittance (&gt;80 %) in the visible region and a direct bandgap of ∼5.13 eV, which indicates that the optical properties remained stable regardless of the Ni content. These results show that the Ni–Pd–CNT-assisted nano-epitaxial lateral overgrowth (nano-ELOG) approach effectively reduces threading dislocation density while preserving wide bandgap transparency. This method offers a low-cost, scalable route for producing high-quality α-Ga<sub>2</sub>O<sub>3</sub>, with strong potential for next-generation power electronics and UV optoelectronic devices.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"202 \",\"pages\":\"Article 110144\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125008820\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008820","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种基于ni - pd - cnt的纳米合金掩膜,该掩膜改善了通过卤化物气相外延(HVPE)生长的α-Ga2O3薄膜的结晶质量。蓝宝石衬底上α-Ga2O3的常规异质外延通常由于晶格和热膨胀不匹配而导致高位错密度。为了解决这一问题,采用化学镀和喷涂的方法在(0001)取向α-Ga2O3缓冲层上沉积了Ni-Pd-CNT纳米合金层,α-Ga2O3再生长15 min。在测试的电镀时间(20、40和60 s)中,40 s条件产生了最厚的涂层(~ 11 μm),最低的蚀刻坑密度(~ 4.8 × 107 cm−2),以及最窄的非对称(10-14)反射x射线衍射摇摆曲线。原子力显微镜和扫描电镜分析证实,在这些条件下,种子晶体的表面均匀性得到改善,倾斜程度降低。所有样品在可见光区都表现出高透光率(> 80%)和直接带隙(~ 5.13 eV),这表明无论Ni含量如何,光学性质都保持稳定。这些结果表明,ni - pd - cnt辅助的纳米外延横向过度生长(nano-ELOG)方法有效地降低了线程位错密度,同时保持了宽的带隙透明度。该方法为生产高质量α-Ga2O3提供了一种低成本、可扩展的途径,在下一代电力电子和UV光电器件中具有强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack-free thick α-Ga2O3 films grown on Ni–Pd-CNT nanoalloy masks
We report a Ni–Pd–CNT-based nanoalloy mask that improves the crystalline quality of α-Ga2O3 epilayers grown via halide vapor phase epitaxy (HVPE). Conventional heteroepitaxy of α-Ga2O3 on sapphire substrates typically results in high dislocation densities due to lattice and thermal expansion mismatches. To address this problem, a Ni–Pd–CNT nanoalloy layer was deposited on a (0001)-oriented α-Ga2O3 buffer layer using electroless plating and spray coating, and α-Ga2O3 was regrown for 15 min. Among the plating durations tested (20, 40, and 60 s), the 40 s condition yielded the thickest epilayer (∼11 μm), the lowest etch pit density (∼4.8 × 107 cm−2), and the narrowest X-ray diffraction rocking curve for the asymmetric (10–14) reflection.
AFM and SEM analyses confirmed improved surface uniformity and reduced tilting of seed crystals under these conditions. All samples exhibited high optical transmittance (>80 %) in the visible region and a direct bandgap of ∼5.13 eV, which indicates that the optical properties remained stable regardless of the Ni content. These results show that the Ni–Pd–CNT-assisted nano-epitaxial lateral overgrowth (nano-ELOG) approach effectively reduces threading dislocation density while preserving wide bandgap transparency. This method offers a low-cost, scalable route for producing high-quality α-Ga2O3, with strong potential for next-generation power electronics and UV optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信