利用低温刻蚀的超低电子温度等离子体增强先进半导体纳米制造的各向异性

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Min-Seok Kim, Jong Ha Ahn, Deok Hwan Kim, Seok Hyeon Ha, Chin-Wook Chung
{"title":"利用低温刻蚀的超低电子温度等离子体增强先进半导体纳米制造的各向异性","authors":"Min-Seok Kim,&nbsp;Jong Ha Ahn,&nbsp;Deok Hwan Kim,&nbsp;Seok Hyeon Ha,&nbsp;Chin-Wook Chung","doi":"10.1016/j.mssp.2025.110156","DOIUrl":null,"url":null,"abstract":"<div><div>Cryogenic plasma etching enables the fabrication of high-aspect-ratio nanostructures, but its practical implementation is hindered by excessive plasma heat flux that necessitates extreme substrate cooling. Here, we demonstrate an ultralow electron temperature (ULET) plasma generated by a DC-biased grid in an inductively coupled plasma system, which effectively suppresses all major components of plasma heat flux. Compared to conventional plasmas, the electron temperature in ULET plasmas decreases by an order of magnitude, resulting in over 50 % reduction in substrate heating. Measurements of the ion energy distribution and substrate temperature reveal that high electron temperatures predominantly contribute to ion bombardment, UV radiation, and surface recombination heat flux. The lower plasma heat flux in ULET plasmas leads to enhanced etch anisotropy in high-aspect-ratio SiN/SiO<sub>2</sub>/Si patterns, showing a sixfold improvement compared to conventional cryogenic plasma etching. Moreover, this high anisotropy is maintained even when the substrate temperature is increased by 100 K above typical cryogenic conditions. These results suggest that ULET plasmas enable energy-efficient, high-fidelity cryogenic etching, potentially reducing cooling costs while improving profile control for advanced semiconductor nanofabrication.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"202 ","pages":"Article 110156"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced anisotropy in advanced semiconductor nanofabrication via ultralow electron temperature plasma for cryogenic etching\",\"authors\":\"Min-Seok Kim,&nbsp;Jong Ha Ahn,&nbsp;Deok Hwan Kim,&nbsp;Seok Hyeon Ha,&nbsp;Chin-Wook Chung\",\"doi\":\"10.1016/j.mssp.2025.110156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cryogenic plasma etching enables the fabrication of high-aspect-ratio nanostructures, but its practical implementation is hindered by excessive plasma heat flux that necessitates extreme substrate cooling. Here, we demonstrate an ultralow electron temperature (ULET) plasma generated by a DC-biased grid in an inductively coupled plasma system, which effectively suppresses all major components of plasma heat flux. Compared to conventional plasmas, the electron temperature in ULET plasmas decreases by an order of magnitude, resulting in over 50 % reduction in substrate heating. Measurements of the ion energy distribution and substrate temperature reveal that high electron temperatures predominantly contribute to ion bombardment, UV radiation, and surface recombination heat flux. The lower plasma heat flux in ULET plasmas leads to enhanced etch anisotropy in high-aspect-ratio SiN/SiO<sub>2</sub>/Si patterns, showing a sixfold improvement compared to conventional cryogenic plasma etching. Moreover, this high anisotropy is maintained even when the substrate temperature is increased by 100 K above typical cryogenic conditions. These results suggest that ULET plasmas enable energy-efficient, high-fidelity cryogenic etching, potentially reducing cooling costs while improving profile control for advanced semiconductor nanofabrication.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"202 \",\"pages\":\"Article 110156\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125008947\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008947","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

低温等离子体刻蚀可以制造高纵横比的纳米结构,但其实际实施受到过多的等离子体热流的阻碍,这需要极端的衬底冷却。在这里,我们展示了在电感耦合等离子体系统中由直流偏置网格产生的超低电子温度(ULET)等离子体,它有效地抑制了等离子体热流的所有主要成分。与传统等离子体相比,ULET等离子体中的电子温度降低了一个数量级,导致衬底加热降低了50%以上。离子能量分布和衬底温度的测量表明,高电子温度对离子轰击、紫外线辐射和表面复合热通量起主要作用。ULET等离子体中较低的等离子体热流通量导致高长宽比SiN/SiO2/Si模式的蚀刻各向异性增强,与传统低温等离子体蚀刻相比,其各向异性提高了6倍。此外,即使衬底温度比典型的低温条件提高100 K,这种高各向异性也能保持。这些结果表明,ULET等离子体可以实现节能、高保真的低温刻蚀,潜在地降低冷却成本,同时改善先进半导体纳米制造的轮廓控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced anisotropy in advanced semiconductor nanofabrication via ultralow electron temperature plasma for cryogenic etching

Enhanced anisotropy in advanced semiconductor nanofabrication via ultralow electron temperature plasma for cryogenic etching
Cryogenic plasma etching enables the fabrication of high-aspect-ratio nanostructures, but its practical implementation is hindered by excessive plasma heat flux that necessitates extreme substrate cooling. Here, we demonstrate an ultralow electron temperature (ULET) plasma generated by a DC-biased grid in an inductively coupled plasma system, which effectively suppresses all major components of plasma heat flux. Compared to conventional plasmas, the electron temperature in ULET plasmas decreases by an order of magnitude, resulting in over 50 % reduction in substrate heating. Measurements of the ion energy distribution and substrate temperature reveal that high electron temperatures predominantly contribute to ion bombardment, UV radiation, and surface recombination heat flux. The lower plasma heat flux in ULET plasmas leads to enhanced etch anisotropy in high-aspect-ratio SiN/SiO2/Si patterns, showing a sixfold improvement compared to conventional cryogenic plasma etching. Moreover, this high anisotropy is maintained even when the substrate temperature is increased by 100 K above typical cryogenic conditions. These results suggest that ULET plasmas enable energy-efficient, high-fidelity cryogenic etching, potentially reducing cooling costs while improving profile control for advanced semiconductor nanofabrication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信