卤素终止(F、Cl和Br)和表面对称性对ti3c2mxenes对H2S、SO2和NO2气体吸附性能的影响

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guorui Rao, Li Fang, Zikun Du and Wei Liu
{"title":"卤素终止(F、Cl和Br)和表面对称性对ti3c2mxenes对H2S、SO2和NO2气体吸附性能的影响","authors":"Guorui Rao, Li Fang, Zikun Du and Wei Liu","doi":"10.1039/D5TC02409A","DOIUrl":null,"url":null,"abstract":"<p >The real-time detection of toxic and hazardous gases under ambient conditions is crucial for industrial safety and human health. However, traditional gas sensors suffer from low sensitivity, poor repeatability, high working temperature, and poor selectivity. MXenes are one of the frontier functional two-dimensional materials with potential in gas sensing. In this work, we systematically investigate the adsorption of three hazardous gases (H<small><sub>2</sub></small>S, SO<small><sub>2</sub></small>, and NO<small><sub>2</sub></small>) on halogen-functionalized Ti<small><sub>3</sub></small>C<small><sub>2</sub></small> MXenes using first-principles calculations, including both symmetric (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>F<small><sub>2</sub></small>, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>Cl<small><sub>2</sub></small>, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>Br<small><sub>2</sub></small>) and asymmetric (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>ClBr) ones. It is found that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl–F and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr–F are suitable for high-sensitive and fast-recovery chemiresistor NO<small><sub>2</sub></small> sensors, while Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr–Br can be used for H<small><sub>2</sub></small>S and SO<small><sub>2</sub></small> sensors. It is worth mentioning that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>F<small><sub>2</sub></small>, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl–Cl, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>BrCl–Cl acquire magneticity after NO<small><sub>2</sub></small> adsorption, which makes them potentially useful in spintronic or magnetic gas sensors. Besides, the adsorption mechanism is explained. The adsorption behaviour is more relevant to the terminal atoms on the surface, compared with the material itself; the intrinsic electric fields caused by the electrostatic potential difference between the two ends of asymmetric Janus structures can influence the charge transfer behaviour of gas molecules, which is promising for surface engineering of MXenes to meet specific demands.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 20699-20714"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of halogen termination (F, Cl, and Br) and surface symmetry on the adsorption performance of Ti3C2 MXenes for H2S, SO2, and NO2 gases\",\"authors\":\"Guorui Rao, Li Fang, Zikun Du and Wei Liu\",\"doi\":\"10.1039/D5TC02409A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The real-time detection of toxic and hazardous gases under ambient conditions is crucial for industrial safety and human health. However, traditional gas sensors suffer from low sensitivity, poor repeatability, high working temperature, and poor selectivity. MXenes are one of the frontier functional two-dimensional materials with potential in gas sensing. In this work, we systematically investigate the adsorption of three hazardous gases (H<small><sub>2</sub></small>S, SO<small><sub>2</sub></small>, and NO<small><sub>2</sub></small>) on halogen-functionalized Ti<small><sub>3</sub></small>C<small><sub>2</sub></small> MXenes using first-principles calculations, including both symmetric (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>F<small><sub>2</sub></small>, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>Cl<small><sub>2</sub></small>, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>Br<small><sub>2</sub></small>) and asymmetric (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>ClBr) ones. It is found that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl–F and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr–F are suitable for high-sensitive and fast-recovery chemiresistor NO<small><sub>2</sub></small> sensors, while Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FBr–Br can be used for H<small><sub>2</sub></small>S and SO<small><sub>2</sub></small> sensors. It is worth mentioning that Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>F<small><sub>2</sub></small>, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>FCl–Cl, and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>BrCl–Cl acquire magneticity after NO<small><sub>2</sub></small> adsorption, which makes them potentially useful in spintronic or magnetic gas sensors. Besides, the adsorption mechanism is explained. The adsorption behaviour is more relevant to the terminal atoms on the surface, compared with the material itself; the intrinsic electric fields caused by the electrostatic potential difference between the two ends of asymmetric Janus structures can influence the charge transfer behaviour of gas molecules, which is promising for surface engineering of MXenes to meet specific demands.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 40\",\"pages\":\" 20699-20714\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02409a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02409a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环境条件下有毒有害气体的实时检测对工业安全和人类健康至关重要。但传统的气体传感器存在灵敏度低、重复性差、工作温度高、选择性差等问题。MXenes是具有气体传感潜力的前沿功能二维材料之一。在这项工作中,我们系统地研究了三种有害气体(H2S, SO2和NO2)在卤素功能化Ti3C2 MXenes上的吸附,包括对称(Ti3C2F2, Ti3C2Cl2和Ti3C2Br2)和不对称(Ti3C2FCl, Ti3C2FBr和Ti3C2ClBr)。结果表明,Ti3C2FCl-F和Ti3C2FBr-F适用于高灵敏度和快速恢复的NO2化学电阻传感器,而Ti3C2FBr-Br适用于H2S和SO2传感器。值得一提的是,Ti3C2F2、Ti3C2FCl-Cl和Ti3C2BrCl-Cl - cl在NO2吸附后获得磁性,这使得它们在自旋电子或磁性气体传感器中具有潜在的用途。并对吸附机理进行了解释。与材料本身相比,吸附行为与表面末端原子的关系更大;不对称Janus结构两端的静电电位差所产生的本征电场可以影响气体分子的电荷转移行为,这对于满足特定要求的MXenes表面工程有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of halogen termination (F, Cl, and Br) and surface symmetry on the adsorption performance of Ti3C2 MXenes for H2S, SO2, and NO2 gases

Effects of halogen termination (F, Cl, and Br) and surface symmetry on the adsorption performance of Ti3C2 MXenes for H2S, SO2, and NO2 gases

The real-time detection of toxic and hazardous gases under ambient conditions is crucial for industrial safety and human health. However, traditional gas sensors suffer from low sensitivity, poor repeatability, high working temperature, and poor selectivity. MXenes are one of the frontier functional two-dimensional materials with potential in gas sensing. In this work, we systematically investigate the adsorption of three hazardous gases (H2S, SO2, and NO2) on halogen-functionalized Ti3C2 MXenes using first-principles calculations, including both symmetric (Ti3C2F2, Ti3C2Cl2, and Ti3C2Br2) and asymmetric (Ti3C2FCl, Ti3C2FBr, and Ti3C2ClBr) ones. It is found that Ti3C2FCl–F and Ti3C2FBr–F are suitable for high-sensitive and fast-recovery chemiresistor NO2 sensors, while Ti3C2FBr–Br can be used for H2S and SO2 sensors. It is worth mentioning that Ti3C2F2, Ti3C2FCl–Cl, and Ti3C2BrCl–Cl acquire magneticity after NO2 adsorption, which makes them potentially useful in spintronic or magnetic gas sensors. Besides, the adsorption mechanism is explained. The adsorption behaviour is more relevant to the terminal atoms on the surface, compared with the material itself; the intrinsic electric fields caused by the electrostatic potential difference between the two ends of asymmetric Janus structures can influence the charge transfer behaviour of gas molecules, which is promising for surface engineering of MXenes to meet specific demands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信