高温氧辅助分子束外延在W(110)上生长MnWO4纳米线

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kalina Fornal, Clara Gutiérrez-Cuesta, Adolfo del Campo, Anna Mandziak, Pawel Nita, José Emilio Prieto, José F. Marco and Juan de la Figuera
{"title":"高温氧辅助分子束外延在W(110)上生长MnWO4纳米线","authors":"Kalina Fornal, Clara Gutiérrez-Cuesta, Adolfo del Campo, Anna Mandziak, Pawel Nita, José Emilio Prieto, José F. Marco and Juan de la Figuera","doi":"10.1039/D5TC02639C","DOIUrl":null,"url":null,"abstract":"<p >We describe the growth of synthetic hübnerite (MnWO<small><sub>4</sub></small>) by high-temperature oxygen-assisted molecular beam epitaxy on W(110). The hübnerite nanowires have widths of hundreds of nanometers, heights of tens of nanometers and lengths in the range of millimeters. The growth was followed in real time by low-energy electron microscopy (LEEM). The nanowires were characterized <em>in situ</em> by low-energy electron microscopy, X-ray absorption and X-ray photoelectron spectroscopy in photoemission microscopy, as well as <em>ex situ</em> by atomic force microscopy, optical microscopy and Raman spectroscopy. Hübnerite can be grown on W(110) by dosing only manganese in a molecular oxygen environment, likely due to the formation of highly mobile WO<small><sub><em>x</em></sub></small> species with diffusion lengths of the order of hundreds of micrometers. These species can react with the deposited Mn and be efficiently incorporated into the wolframite structure of hübnerite. The strongly anisotropic growth observed may stem from the inherent anisotropy of the wolframite lattice. We propose that this method may be applicable to the growth of other tungstates as well.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 20602-20608"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02639c?page=search","citationCount":"0","resultStr":"{\"title\":\"Growth of MnWO4 nanowires on W(110) by high-temperature oxygen-assisted molecular beam epitaxy\",\"authors\":\"Kalina Fornal, Clara Gutiérrez-Cuesta, Adolfo del Campo, Anna Mandziak, Pawel Nita, José Emilio Prieto, José F. Marco and Juan de la Figuera\",\"doi\":\"10.1039/D5TC02639C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We describe the growth of synthetic hübnerite (MnWO<small><sub>4</sub></small>) by high-temperature oxygen-assisted molecular beam epitaxy on W(110). The hübnerite nanowires have widths of hundreds of nanometers, heights of tens of nanometers and lengths in the range of millimeters. The growth was followed in real time by low-energy electron microscopy (LEEM). The nanowires were characterized <em>in situ</em> by low-energy electron microscopy, X-ray absorption and X-ray photoelectron spectroscopy in photoemission microscopy, as well as <em>ex situ</em> by atomic force microscopy, optical microscopy and Raman spectroscopy. Hübnerite can be grown on W(110) by dosing only manganese in a molecular oxygen environment, likely due to the formation of highly mobile WO<small><sub><em>x</em></sub></small> species with diffusion lengths of the order of hundreds of micrometers. These species can react with the deposited Mn and be efficiently incorporated into the wolframite structure of hübnerite. The strongly anisotropic growth observed may stem from the inherent anisotropy of the wolframite lattice. We propose that this method may be applicable to the growth of other tungstates as well.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 40\",\"pages\":\" 20602-20608\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02639c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02639c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02639c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了高温氧辅助分子束外延法在W(110)上生长合成的铌酸锂(MnWO4)。h钠辉石纳米线的宽度为数百纳米,高度为数十纳米,长度在毫米范围内。低能电子显微镜(LEEM)实时观察生长情况。利用低能电子显微镜、x射线吸收和x射线光电子能谱在光电发射显微镜下进行了原位表征,并利用原子力显微镜、光学显微镜和拉曼光谱对纳米线进行了非原位表征。在分子氧环境中,仅添加锰就可以在W(110)上生长出h钠辉石,这可能是由于形成了具有数百微米量级扩散长度的高度可移动的WOx物种。这些物质可以与沉积的Mn发生反应,并有效地结合到h白钨矿的黑钨矿结构中。观察到的强各向异性生长可能源于黑钨矿晶格固有的各向异性。我们认为这种方法也适用于其他钨酸盐的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth of MnWO4 nanowires on W(110) by high-temperature oxygen-assisted molecular beam epitaxy

Growth of MnWO4 nanowires on W(110) by high-temperature oxygen-assisted molecular beam epitaxy

We describe the growth of synthetic hübnerite (MnWO4) by high-temperature oxygen-assisted molecular beam epitaxy on W(110). The hübnerite nanowires have widths of hundreds of nanometers, heights of tens of nanometers and lengths in the range of millimeters. The growth was followed in real time by low-energy electron microscopy (LEEM). The nanowires were characterized in situ by low-energy electron microscopy, X-ray absorption and X-ray photoelectron spectroscopy in photoemission microscopy, as well as ex situ by atomic force microscopy, optical microscopy and Raman spectroscopy. Hübnerite can be grown on W(110) by dosing only manganese in a molecular oxygen environment, likely due to the formation of highly mobile WOx species with diffusion lengths of the order of hundreds of micrometers. These species can react with the deposited Mn and be efficiently incorporated into the wolframite structure of hübnerite. The strongly anisotropic growth observed may stem from the inherent anisotropy of the wolframite lattice. We propose that this method may be applicable to the growth of other tungstates as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信