在窄带隙半导体铜(i)碘化物中最大限度地吸收阳光,以增强光催化染料降解

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gia M. Carignan, Simon J. Teat, Xiuze Hei, Srinivas Chakravartula, Gene Hall, Le Hong Nguyen and Jing Li
{"title":"在窄带隙半导体铜(i)碘化物中最大限度地吸收阳光,以增强光催化染料降解","authors":"Gia M. Carignan, Simon J. Teat, Xiuze Hei, Srinivas Chakravartula, Gene Hall, Le Hong Nguyen and Jing Li","doi":"10.1039/D5TC02511G","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic dye degradation leverages sunlight to break down dyes and pigments into safer, simpler molecules. Using a material that can absorb a broad range of the solar spectrum optimizes the speed and efficiency of this process. In this study, we explore a series of new, narrow bandgap copper iodide semiconductors (1.5–1.7 eV) with various dimensionalities (0D to 3D) to evaluate their photocatalytic efficiency in dye degradation. The most effective material achieved 95% degradation within just 27 minutes. Mass spectrometry provided a detailed insight and in-depth understanding into the degradation mechanism. All materials demonstrated excellent stability under ambient conditions, highlighting their promise as eco-friendly candidates for dye degradation in water purification.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 20580-20588"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02511g?page=search","citationCount":"0","resultStr":"{\"title\":\"Maximizing sunlight absorption in narrow bandgap semiconducting copper(i) iodides for enhanced photocatalytic dye degradation\",\"authors\":\"Gia M. Carignan, Simon J. Teat, Xiuze Hei, Srinivas Chakravartula, Gene Hall, Le Hong Nguyen and Jing Li\",\"doi\":\"10.1039/D5TC02511G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic dye degradation leverages sunlight to break down dyes and pigments into safer, simpler molecules. Using a material that can absorb a broad range of the solar spectrum optimizes the speed and efficiency of this process. In this study, we explore a series of new, narrow bandgap copper iodide semiconductors (1.5–1.7 eV) with various dimensionalities (0D to 3D) to evaluate their photocatalytic efficiency in dye degradation. The most effective material achieved 95% degradation within just 27 minutes. Mass spectrometry provided a detailed insight and in-depth understanding into the degradation mechanism. All materials demonstrated excellent stability under ambient conditions, highlighting their promise as eco-friendly candidates for dye degradation in water purification.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 40\",\"pages\":\" 20580-20588\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02511g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02511g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02511g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化染料降解利用阳光将染料和色素分解成更安全、更简单的分子。使用一种可以吸收广泛太阳光谱的材料可以优化这一过程的速度和效率。在这项研究中,我们探索了一系列具有不同维度(0D到3D)的新型窄带隙碘化铜半导体(1.5-1.7 eV),以评估它们在染料降解中的光催化效率。最有效的材料在27分钟内实现了95%的降解。质谱分析为降解机制提供了详细的见解和深入的了解。所有材料在环境条件下都表现出优异的稳定性,突出了它们作为水净化中染料降解的生态友好候选者的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximizing sunlight absorption in narrow bandgap semiconducting copper(i) iodides for enhanced photocatalytic dye degradation

Maximizing sunlight absorption in narrow bandgap semiconducting copper(i) iodides for enhanced photocatalytic dye degradation

Photocatalytic dye degradation leverages sunlight to break down dyes and pigments into safer, simpler molecules. Using a material that can absorb a broad range of the solar spectrum optimizes the speed and efficiency of this process. In this study, we explore a series of new, narrow bandgap copper iodide semiconductors (1.5–1.7 eV) with various dimensionalities (0D to 3D) to evaluate their photocatalytic efficiency in dye degradation. The most effective material achieved 95% degradation within just 27 minutes. Mass spectrometry provided a detailed insight and in-depth understanding into the degradation mechanism. All materials demonstrated excellent stability under ambient conditions, highlighting their promise as eco-friendly candidates for dye degradation in water purification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信