Xinyang Zhang, Xinyang Ge, Jingya You, Yipu Wang, Qiang Huang and Li Wan
{"title":"新兴手性分子碳材料的手电子应用","authors":"Xinyang Zhang, Xinyang Ge, Jingya You, Yipu Wang, Qiang Huang and Li Wan","doi":"10.1039/D5TC02532J","DOIUrl":null,"url":null,"abstract":"<p >Chirality is a ubiquitous phenomenon in nature and continues to inspire modern materials science. Among various chiral systems, chiral carbon materials have been extensively developed, with their chirality flexibly tuned through molecular-level chemical design and further amplified by solid-state intermolecular assembly. By incorporating different functional groups, these carbon materials can be tailored to exhibit excellent light-emitting and light-absorbing properties, making their chiral forms suitable for emitting or detecting circularly polarized light. In this review, we first introduce the basic concepts of chiral materials and spectroscopic chiroptical responses, and explain how chirality is introduced into molecular carbon systems through chemical design. We then systematically summarize recent research progress in chiral optoelectronic (chiroptoelectronic) applications that incorporate chiral carbon materials. Furthermore, we analyze the dissymmetry factors of each system and offer perspectives on strategies to enhance performance. We believe that this review will attract broad attention from interdisciplinary researchers working on carbon materials, chirality science, and optoelectronics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 40","pages":" 20444-20462"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02532j?page=search","citationCount":"0","resultStr":"{\"title\":\"Emerging chiral molecular carbon materials for chiroptoelectronic applications\",\"authors\":\"Xinyang Zhang, Xinyang Ge, Jingya You, Yipu Wang, Qiang Huang and Li Wan\",\"doi\":\"10.1039/D5TC02532J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Chirality is a ubiquitous phenomenon in nature and continues to inspire modern materials science. Among various chiral systems, chiral carbon materials have been extensively developed, with their chirality flexibly tuned through molecular-level chemical design and further amplified by solid-state intermolecular assembly. By incorporating different functional groups, these carbon materials can be tailored to exhibit excellent light-emitting and light-absorbing properties, making their chiral forms suitable for emitting or detecting circularly polarized light. In this review, we first introduce the basic concepts of chiral materials and spectroscopic chiroptical responses, and explain how chirality is introduced into molecular carbon systems through chemical design. We then systematically summarize recent research progress in chiral optoelectronic (chiroptoelectronic) applications that incorporate chiral carbon materials. Furthermore, we analyze the dissymmetry factors of each system and offer perspectives on strategies to enhance performance. We believe that this review will attract broad attention from interdisciplinary researchers working on carbon materials, chirality science, and optoelectronics.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 40\",\"pages\":\" 20444-20462\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc02532j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02532j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02532j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Emerging chiral molecular carbon materials for chiroptoelectronic applications
Chirality is a ubiquitous phenomenon in nature and continues to inspire modern materials science. Among various chiral systems, chiral carbon materials have been extensively developed, with their chirality flexibly tuned through molecular-level chemical design and further amplified by solid-state intermolecular assembly. By incorporating different functional groups, these carbon materials can be tailored to exhibit excellent light-emitting and light-absorbing properties, making their chiral forms suitable for emitting or detecting circularly polarized light. In this review, we first introduce the basic concepts of chiral materials and spectroscopic chiroptical responses, and explain how chirality is introduced into molecular carbon systems through chemical design. We then systematically summarize recent research progress in chiral optoelectronic (chiroptoelectronic) applications that incorporate chiral carbon materials. Furthermore, we analyze the dissymmetry factors of each system and offer perspectives on strategies to enhance performance. We believe that this review will attract broad attention from interdisciplinary researchers working on carbon materials, chirality science, and optoelectronics.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors