高性能超宽带隙CaSnO3金属氧化物半导体场效应晶体管

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weideng Sun, Junghyun Koo, Donghwan Kim, Hongseung Lee, Rishi Raj, Chengyu Zhu, Kiyoung Lee, Andre Mkhoyan, Hagyoul Bae, Bharat Jalan, Gang Qiu
{"title":"高性能超宽带隙CaSnO3金属氧化物半导体场效应晶体管","authors":"Weideng Sun, Junghyun Koo, Donghwan Kim, Hongseung Lee, Rishi Raj, Chengyu Zhu, Kiyoung Lee, Andre Mkhoyan, Hagyoul Bae, Bharat Jalan, Gang Qiu","doi":"10.1002/aelm.202500459","DOIUrl":null,"url":null,"abstract":"The increasing demand for high‐voltage and high‐power electronic applications has intensified the search for novel ultrawide bandgap (UWB) semiconductors. Alkaline earth stannates possess wide band gaps and exhibit the highest room‐temperature electron mobilities among all perovskite oxides. Among this family, Calcium stannate (CaSnO<jats:sub>3</jats:sub>) has the largest band gap of ≈4.7 eV, holding great promise for high‐power applications. However, the demonstration of CaSnO<jats:sub>3</jats:sub> power electronic devices is so far limited. In this work, high‐performance metal‐oxide‐semiconductor field‐effect transistor (MOSFET) devices based on lanthanum (La)‐doped CaSnO<jats:sub>3</jats:sub> are demonstrated for the first time. The MOSFETs exhibit an on/off ratio exceeding 10<jats:sup>8</jats:sup>, along with field‐effect mobility of 8.4 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> and on‐state current of 30 mA mm<jats:sup>−1</jats:sup>. The high performance of the CaSnO<jats:sub>3</jats:sub> MOSFET devices can be ascribed to the excellent metal‐to‐semiconductor contact resistance of 0.73 kΩ·µm. The devices also show great potential for harsh environment operations, as high‐temperature operations up to 400 K are demonstrated. An off‐state breakdown voltage of 1660 V is achieved, with a breakdown field of ∼8.3 MV cm<jats:sup>−1</jats:sup> among the highest reported for all UWB semiconductors. This work represents significant progress toward realizing the practical application of CaSnO<jats:sub>3</jats:sub> in future high‐voltage power electronic technologies.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Performance Ultra‐Wide‐Bandgap CaSnO3 Metal‐Oxide‐Semiconductor Field‐Effect Transistors\",\"authors\":\"Weideng Sun, Junghyun Koo, Donghwan Kim, Hongseung Lee, Rishi Raj, Chengyu Zhu, Kiyoung Lee, Andre Mkhoyan, Hagyoul Bae, Bharat Jalan, Gang Qiu\",\"doi\":\"10.1002/aelm.202500459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for high‐voltage and high‐power electronic applications has intensified the search for novel ultrawide bandgap (UWB) semiconductors. Alkaline earth stannates possess wide band gaps and exhibit the highest room‐temperature electron mobilities among all perovskite oxides. Among this family, Calcium stannate (CaSnO<jats:sub>3</jats:sub>) has the largest band gap of ≈4.7 eV, holding great promise for high‐power applications. However, the demonstration of CaSnO<jats:sub>3</jats:sub> power electronic devices is so far limited. In this work, high‐performance metal‐oxide‐semiconductor field‐effect transistor (MOSFET) devices based on lanthanum (La)‐doped CaSnO<jats:sub>3</jats:sub> are demonstrated for the first time. The MOSFETs exhibit an on/off ratio exceeding 10<jats:sup>8</jats:sup>, along with field‐effect mobility of 8.4 cm<jats:sup>2</jats:sup> V<jats:sup>−1</jats:sup> s<jats:sup>−1</jats:sup> and on‐state current of 30 mA mm<jats:sup>−1</jats:sup>. The high performance of the CaSnO<jats:sub>3</jats:sub> MOSFET devices can be ascribed to the excellent metal‐to‐semiconductor contact resistance of 0.73 kΩ·µm. The devices also show great potential for harsh environment operations, as high‐temperature operations up to 400 K are demonstrated. An off‐state breakdown voltage of 1660 V is achieved, with a breakdown field of ∼8.3 MV cm<jats:sup>−1</jats:sup> among the highest reported for all UWB semiconductors. This work represents significant progress toward realizing the practical application of CaSnO<jats:sub>3</jats:sub> in future high‐voltage power electronic technologies.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500459\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500459","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着对高电压和高功率电子应用需求的不断增长,对新型超宽带半导体的研究日益深入。在所有钙钛矿氧化物中,碱土锡酸盐具有宽的带隙和最高的室温电子迁移率。其中,锡酸钙(CaSnO3)的带隙最大,约为4.7 eV,在高功率应用中具有很大的前景。然而,CaSnO3电力电子器件的演示目前还很有限。在这项工作中,首次展示了基于镧(La)掺杂CaSnO3的高性能金属氧化物半导体场效应晶体管(MOSFET)器件。mosfet的开/关比超过108,场效应迁移率为8.4 cm2 V−1 s−1,导通电流为30 mA mm−1。CaSnO3 MOSFET器件的高性能可归因于优良的金属-半导体接触电阻0.73 kΩ·µm。该器件还显示出恶劣环境操作的巨大潜力,如高达400k的高温操作。实现了1660 V的断态击穿电压,击穿场为~ 8.3 MV cm - 1,是所有UWB半导体中报道的最高击穿场。这项工作代表着CaSnO3在未来高压电力电子技术中实现实际应用的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High‐Performance Ultra‐Wide‐Bandgap CaSnO3 Metal‐Oxide‐Semiconductor Field‐Effect Transistors

High‐Performance Ultra‐Wide‐Bandgap CaSnO3 Metal‐Oxide‐Semiconductor Field‐Effect Transistors
The increasing demand for high‐voltage and high‐power electronic applications has intensified the search for novel ultrawide bandgap (UWB) semiconductors. Alkaline earth stannates possess wide band gaps and exhibit the highest room‐temperature electron mobilities among all perovskite oxides. Among this family, Calcium stannate (CaSnO3) has the largest band gap of ≈4.7 eV, holding great promise for high‐power applications. However, the demonstration of CaSnO3 power electronic devices is so far limited. In this work, high‐performance metal‐oxide‐semiconductor field‐effect transistor (MOSFET) devices based on lanthanum (La)‐doped CaSnO3 are demonstrated for the first time. The MOSFETs exhibit an on/off ratio exceeding 108, along with field‐effect mobility of 8.4 cm2 V−1 s−1 and on‐state current of 30 mA mm−1. The high performance of the CaSnO3 MOSFET devices can be ascribed to the excellent metal‐to‐semiconductor contact resistance of 0.73 kΩ·µm. The devices also show great potential for harsh environment operations, as high‐temperature operations up to 400 K are demonstrated. An off‐state breakdown voltage of 1660 V is achieved, with a breakdown field of ∼8.3 MV cm−1 among the highest reported for all UWB semiconductors. This work represents significant progress toward realizing the practical application of CaSnO3 in future high‐voltage power electronic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信