理解深度强化学习:增强光网络中可解释的决策

IF 4.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jorge A. Bermúdez, Patricia Morales, Hermann Pempelfort, Mauricio Araya, Nicolás Jara
{"title":"理解深度强化学习:增强光网络中可解释的决策","authors":"Jorge A. Bermúdez,&nbsp;Patricia Morales,&nbsp;Hermann Pempelfort,&nbsp;Mauricio Araya,&nbsp;Nicolás Jara","doi":"10.1016/j.icte.2025.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving complex tasks in optical networks. However, its black-box nature poses challenges for interpretability. For network operators, understanding the reasoning behind decisions is crucial for effective control and resource management. This paper addresses this gap by proposing a framework that generates explanations based on DRL agents’ decision-making processes. Using imitation learning, we train four classifiers to approximate a robust DRL agent designed for elastic optical networks. Our approach enhances explainability, enabling us to better understand and manage DRL-based decisions in optical network environments.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"11 5","pages":"Pages 969-973"},"PeriodicalIF":4.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding deep reinforcement learning: Enhancing explainable decision-making in optical networks\",\"authors\":\"Jorge A. Bermúdez,&nbsp;Patricia Morales,&nbsp;Hermann Pempelfort,&nbsp;Mauricio Araya,&nbsp;Nicolás Jara\",\"doi\":\"10.1016/j.icte.2025.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving complex tasks in optical networks. However, its black-box nature poses challenges for interpretability. For network operators, understanding the reasoning behind decisions is crucial for effective control and resource management. This paper addresses this gap by proposing a framework that generates explanations based on DRL agents’ decision-making processes. Using imitation learning, we train four classifiers to approximate a robust DRL agent designed for elastic optical networks. Our approach enhances explainability, enabling us to better understand and manage DRL-based decisions in optical network environments.</div></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"11 5\",\"pages\":\"Pages 969-973\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959525001134\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959525001134","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

深度强化学习(DRL)已成为解决光网络中复杂任务的一种有前途的方法。然而,它的黑箱性质对可解释性提出了挑战。对于网络运营商来说,了解决策背后的原因对于有效控制和资源管理至关重要。本文通过提出一个基于DRL代理的决策过程生成解释的框架来解决这一差距。利用模仿学习,我们训练了四个分类器来近似设计用于弹性光网络的鲁棒DRL代理。我们的方法增强了可解释性,使我们能够更好地理解和管理光网络环境中基于drl的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding deep reinforcement learning: Enhancing explainable decision-making in optical networks
Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving complex tasks in optical networks. However, its black-box nature poses challenges for interpretability. For network operators, understanding the reasoning behind decisions is crucial for effective control and resource management. This paper addresses this gap by proposing a framework that generates explanations based on DRL agents’ decision-making processes. Using imitation learning, we train four classifiers to approximate a robust DRL agent designed for elastic optical networks. Our approach enhances explainability, enabling us to better understand and manage DRL-based decisions in optical network environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信