用于人工触觉突触的仿生触觉传感器

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ling-Feng Liu, Zhe-Rui Zhao, Qi-Jun Sun, Guowu Tang, Xin-Gui Tang, Ye Zhou
{"title":"用于人工触觉突触的仿生触觉传感器","authors":"Ling-Feng Liu, Zhe-Rui Zhao, Qi-Jun Sun, Guowu Tang, Xin-Gui Tang, Ye Zhou","doi":"10.1016/j.mtphys.2025.101890","DOIUrl":null,"url":null,"abstract":"Human skin-inspired tactile perception holds transformative potential for dexterous robotic manipulation, intelligent medical rehabilitation, and immersive virtual reality. However, the development of high-fidelity artificial tactile neuron systems is constrained by the scarcity of biomimetic synapses capable of concurrent sensing and neuromorphic processing. This work introduces a high-performance piezoresistive tactile sensor fabricated via a facile parallel-microstructure design enhanced with carbon powder-modified conductive pathways. The sensor achieves ultrahigh sensitivity (16.27 kPa<sup>-1</sup> in the 0-2 kPa range), a rapid response time (37 ms), and exceptional stability (&gt;1,500 cycles). Its multimodal detection capabilities enable simultaneous monitoring of physiological signals and human motion kinematics. Furthermore, integration with a memristor establishes a fully functional artificial tactile neuron system. These findings provide a scalable architecture for merging high-sensitivity tactile sensing with neuromorphic computing, offering critical insights for advancing intelligent robotics, neuroprosthetics, and brain-machine interfaces that require human-like haptic intelligence.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"77 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bio-Inspired Tactile Sensor for Artificial Tactile Synapses\",\"authors\":\"Ling-Feng Liu, Zhe-Rui Zhao, Qi-Jun Sun, Guowu Tang, Xin-Gui Tang, Ye Zhou\",\"doi\":\"10.1016/j.mtphys.2025.101890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human skin-inspired tactile perception holds transformative potential for dexterous robotic manipulation, intelligent medical rehabilitation, and immersive virtual reality. However, the development of high-fidelity artificial tactile neuron systems is constrained by the scarcity of biomimetic synapses capable of concurrent sensing and neuromorphic processing. This work introduces a high-performance piezoresistive tactile sensor fabricated via a facile parallel-microstructure design enhanced with carbon powder-modified conductive pathways. The sensor achieves ultrahigh sensitivity (16.27 kPa<sup>-1</sup> in the 0-2 kPa range), a rapid response time (37 ms), and exceptional stability (&gt;1,500 cycles). Its multimodal detection capabilities enable simultaneous monitoring of physiological signals and human motion kinematics. Furthermore, integration with a memristor establishes a fully functional artificial tactile neuron system. These findings provide a scalable architecture for merging high-sensitivity tactile sensing with neuromorphic computing, offering critical insights for advancing intelligent robotics, neuroprosthetics, and brain-machine interfaces that require human-like haptic intelligence.\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtphys.2025.101890\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2025.101890","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人类皮肤启发的触觉感知在灵巧的机器人操作、智能医疗康复和沉浸式虚拟现实方面具有变革潜力。然而,高保真人工触觉神经元系统的发展受到能够同时进行感知和神经形态处理的仿生突触的缺乏的限制。本研究介绍了一种高性能压阻式触觉传感器,该传感器采用碳粉改性导电通道,通过简单的平行微结构设计制造而成。该传感器实现了超高灵敏度(0-2 kPa范围内16.27 kPa-1),快速响应时间(37 ms)和卓越的稳定性(>; 1500周期)。它的多模态检测能力能够同时监测生理信号和人体运动运动学。此外,与忆阻器的集成建立了全功能的人工触觉神经元系统。这些发现为将高灵敏度触觉传感与神经形态计算相结合提供了一个可扩展的架构,为推进智能机器人、神经假肢和需要类人触觉智能的脑机接口提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Bio-Inspired Tactile Sensor for Artificial Tactile Synapses

A Bio-Inspired Tactile Sensor for Artificial Tactile Synapses
Human skin-inspired tactile perception holds transformative potential for dexterous robotic manipulation, intelligent medical rehabilitation, and immersive virtual reality. However, the development of high-fidelity artificial tactile neuron systems is constrained by the scarcity of biomimetic synapses capable of concurrent sensing and neuromorphic processing. This work introduces a high-performance piezoresistive tactile sensor fabricated via a facile parallel-microstructure design enhanced with carbon powder-modified conductive pathways. The sensor achieves ultrahigh sensitivity (16.27 kPa-1 in the 0-2 kPa range), a rapid response time (37 ms), and exceptional stability (>1,500 cycles). Its multimodal detection capabilities enable simultaneous monitoring of physiological signals and human motion kinematics. Furthermore, integration with a memristor establishes a fully functional artificial tactile neuron system. These findings provide a scalable architecture for merging high-sensitivity tactile sensing with neuromorphic computing, offering critical insights for advancing intelligent robotics, neuroprosthetics, and brain-machine interfaces that require human-like haptic intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信