用于数字SERS生物传感的双特异性抗体片段固定化的物理化学调整。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Jing Wang,Quan Zhou,Christopher B Howard,Matt Trau
{"title":"用于数字SERS生物传感的双特异性抗体片段固定化的物理化学调整。","authors":"Jing Wang,Quan Zhou,Christopher B Howard,Matt Trau","doi":"10.1021/acs.analchem.5c03980","DOIUrl":null,"url":null,"abstract":"Surface-enhanced Raman scattering (SERS) biosensing platforms offer exceptional sensitivity and multiplexing capabilities for biomarker detection, but their performance is often limited by uncontrolled ligand orientation on nanotags. To address this, we developed a SERS nanotag incorporating a bispecific antibody fragment (BsAb) engineered to bind the SARS-CoV-2 receptor-binding domain (RBD) and methoxy polyethylene glycol (mPEG) simultaneously, enabling orientation-controlled immobilization onto mPEG-grafted plasmonic nanostructures. We systematically evaluated how immobilization conditions─particularly pH relative to the BsAb's isoelectric point (pI)─influence surface density, antigen accessibility, and overall assay performance using a combination of orthogonal physicochemical and functional assays. Our results show that immobilization at pH above the BsAb's pI improves antigen accessibility and nanotag stability, despite reduced immobilization density. When integrated into a digital SERS biosensing platform, the BsAb-functionalized SERS nanotags enabled highly specific digital detection of RBD in plasma, achieving a low limit of detection (3.97 ng/mL) and outperforming enzyme-linked immunosorbent assay in assay time, reagent consumption, and multiplexing potential. This study establishes a robust strategy for designing and optimizing antibody fragment-based SERS nanotags, advancing their application in next-generation diagnostic platforms.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"20 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Tuning of Bispecific Antibody Fragment Immobilization for Robust Digital SERS Biosensing.\",\"authors\":\"Jing Wang,Quan Zhou,Christopher B Howard,Matt Trau\",\"doi\":\"10.1021/acs.analchem.5c03980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface-enhanced Raman scattering (SERS) biosensing platforms offer exceptional sensitivity and multiplexing capabilities for biomarker detection, but their performance is often limited by uncontrolled ligand orientation on nanotags. To address this, we developed a SERS nanotag incorporating a bispecific antibody fragment (BsAb) engineered to bind the SARS-CoV-2 receptor-binding domain (RBD) and methoxy polyethylene glycol (mPEG) simultaneously, enabling orientation-controlled immobilization onto mPEG-grafted plasmonic nanostructures. We systematically evaluated how immobilization conditions─particularly pH relative to the BsAb's isoelectric point (pI)─influence surface density, antigen accessibility, and overall assay performance using a combination of orthogonal physicochemical and functional assays. Our results show that immobilization at pH above the BsAb's pI improves antigen accessibility and nanotag stability, despite reduced immobilization density. When integrated into a digital SERS biosensing platform, the BsAb-functionalized SERS nanotags enabled highly specific digital detection of RBD in plasma, achieving a low limit of detection (3.97 ng/mL) and outperforming enzyme-linked immunosorbent assay in assay time, reagent consumption, and multiplexing potential. This study establishes a robust strategy for designing and optimizing antibody fragment-based SERS nanotags, advancing their application in next-generation diagnostic platforms.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c03980\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c03980","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

表面增强拉曼散射(SERS)生物传感平台为生物标志物检测提供了卓越的灵敏度和多路复用能力,但它们的性能往往受到纳米标签上不受控制的配体取向的限制。为了解决这个问题,我们开发了一种包含双特异性抗体片段(BsAb)的SERS纳米标签,该抗体片段可以同时结合SARS-CoV-2受体结合域(RBD)和甲氧基聚乙二醇(mPEG),从而实现定向控制固定到mPEG接枝的等离子体纳米结构上。我们系统地评估了固定条件──特别是相对于BsAb等电点(pI)的pH值──如何影响表面密度、抗原可及性和使用正交理化和功能分析相结合的整体分析性能。我们的研究结果表明,尽管固定化密度降低,但在高于BsAb pI的pH下固定化可以提高抗原的可及性和纳米标签的稳定性。当集成到数字SERS生物传感平台时,bsab功能化的SERS纳米标签能够对血浆中的RBD进行高度特异性的数字检测,实现低检测限(3.97 ng/mL),并且在检测时间,试剂消耗和复用潜力方面优于酶联免疫吸附法。本研究建立了一个稳健的策略来设计和优化基于抗体片段的SERS纳米标签,推进其在下一代诊断平台中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physicochemical Tuning of Bispecific Antibody Fragment Immobilization for Robust Digital SERS Biosensing.
Surface-enhanced Raman scattering (SERS) biosensing platforms offer exceptional sensitivity and multiplexing capabilities for biomarker detection, but their performance is often limited by uncontrolled ligand orientation on nanotags. To address this, we developed a SERS nanotag incorporating a bispecific antibody fragment (BsAb) engineered to bind the SARS-CoV-2 receptor-binding domain (RBD) and methoxy polyethylene glycol (mPEG) simultaneously, enabling orientation-controlled immobilization onto mPEG-grafted plasmonic nanostructures. We systematically evaluated how immobilization conditions─particularly pH relative to the BsAb's isoelectric point (pI)─influence surface density, antigen accessibility, and overall assay performance using a combination of orthogonal physicochemical and functional assays. Our results show that immobilization at pH above the BsAb's pI improves antigen accessibility and nanotag stability, despite reduced immobilization density. When integrated into a digital SERS biosensing platform, the BsAb-functionalized SERS nanotags enabled highly specific digital detection of RBD in plasma, achieving a low limit of detection (3.97 ng/mL) and outperforming enzyme-linked immunosorbent assay in assay time, reagent consumption, and multiplexing potential. This study establishes a robust strategy for designing and optimizing antibody fragment-based SERS nanotags, advancing their application in next-generation diagnostic platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信