高灵敏度温度传感器基于可调化学计量替代等离子体材料,使用多种热响应分析物

IF 5.6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Md. Shakibur Rahman , Rizwanur Rahad , Dil Mahfuzur Rahman , Md. Jahidul Hoq Emon , Rummanur Rahad
{"title":"高灵敏度温度传感器基于可调化学计量替代等离子体材料,使用多种热响应分析物","authors":"Md. Shakibur Rahman ,&nbsp;Rizwanur Rahad ,&nbsp;Dil Mahfuzur Rahman ,&nbsp;Md. Jahidul Hoq Emon ,&nbsp;Rummanur Rahad","doi":"10.1016/j.measurement.2025.119127","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a CMOS-compatible plasmonic sensor designed for temperature detection across multiple thermo-responsive analytes with ultra-high sensitivity. Addressing the limitations of traditional plasmonic materials, we explore yttrium-doped titanium nitride (TiN) as an alternative, offering enhanced stability, thermal durability, and compatibility with CMOS fabrication processes. The sensor, featuring a double-ring connected resonator, achieves a refractive index sensitivity of 3863.54 nm/RIU and a temperature sensitivity of 2.44735 nm/°C in a chloroform-based medium. By optimizing yttrium doping levels, we balance plasmonic tunability with material stability, as evidenced by dielectric permittivity and SPPs parameters and found that the ratio of Ti and Y having 91%:9% exhibits higher sensitivity than the others (63%:37%, 79%:21%, 85%:15%). Comparative analysis across dielectric environments highlights the sensor’s adaptability and high sensitivity in different thermo-responsive dielectric media. Thus, this work advances plasmonic sensor technology for precise temperature sensing applications.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"258 ","pages":"Article 119127"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive temperature sensor based on tunable stoichiometric alternative plasmonic material using multiple thermo-responsive analytes\",\"authors\":\"Md. Shakibur Rahman ,&nbsp;Rizwanur Rahad ,&nbsp;Dil Mahfuzur Rahman ,&nbsp;Md. Jahidul Hoq Emon ,&nbsp;Rummanur Rahad\",\"doi\":\"10.1016/j.measurement.2025.119127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a CMOS-compatible plasmonic sensor designed for temperature detection across multiple thermo-responsive analytes with ultra-high sensitivity. Addressing the limitations of traditional plasmonic materials, we explore yttrium-doped titanium nitride (TiN) as an alternative, offering enhanced stability, thermal durability, and compatibility with CMOS fabrication processes. The sensor, featuring a double-ring connected resonator, achieves a refractive index sensitivity of 3863.54 nm/RIU and a temperature sensitivity of 2.44735 nm/°C in a chloroform-based medium. By optimizing yttrium doping levels, we balance plasmonic tunability with material stability, as evidenced by dielectric permittivity and SPPs parameters and found that the ratio of Ti and Y having 91%:9% exhibits higher sensitivity than the others (63%:37%, 79%:21%, 85%:15%). Comparative analysis across dielectric environments highlights the sensor’s adaptability and high sensitivity in different thermo-responsive dielectric media. Thus, this work advances plasmonic sensor technology for precise temperature sensing applications.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"258 \",\"pages\":\"Article 119127\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125024868\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125024868","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种cmos兼容的等离子体传感器,设计用于多种热响应分析物的温度检测,具有超高灵敏度。为了解决传统等离子体材料的局限性,我们探索了掺钇氮化钛(TiN)作为一种替代材料,它具有增强的稳定性、热耐久性以及与CMOS制造工艺的兼容性。该传感器采用双环连接谐振器,在氯仿介质中实现了3863.54 nm/RIU的折射率灵敏度和2.44735 nm/°C的温度灵敏度。通过优化钇掺杂水平,我们平衡了等离子体可调性和材料稳定性,并通过介电常数和SPPs参数证明了这一点,并发现Ti和Y的比例为91%:9%比其他比例(63%:37%,79%:21%,85%:15%)具有更高的灵敏度。跨介质环境的对比分析突出了传感器在不同热响应介质中的适应性和高灵敏度。因此,这项工作推进了等离子体传感器技术的精确温度传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly sensitive temperature sensor based on tunable stoichiometric alternative plasmonic material using multiple thermo-responsive analytes
This study presents a CMOS-compatible plasmonic sensor designed for temperature detection across multiple thermo-responsive analytes with ultra-high sensitivity. Addressing the limitations of traditional plasmonic materials, we explore yttrium-doped titanium nitride (TiN) as an alternative, offering enhanced stability, thermal durability, and compatibility with CMOS fabrication processes. The sensor, featuring a double-ring connected resonator, achieves a refractive index sensitivity of 3863.54 nm/RIU and a temperature sensitivity of 2.44735 nm/°C in a chloroform-based medium. By optimizing yttrium doping levels, we balance plasmonic tunability with material stability, as evidenced by dielectric permittivity and SPPs parameters and found that the ratio of Ti and Y having 91%:9% exhibits higher sensitivity than the others (63%:37%, 79%:21%, 85%:15%). Comparative analysis across dielectric environments highlights the sensor’s adaptability and high sensitivity in different thermo-responsive dielectric media. Thus, this work advances plasmonic sensor technology for precise temperature sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信