{"title":"气球模型参数在功能近红外光谱模拟中的灵敏度分析","authors":"Murad Althobaiti","doi":"10.1016/j.jneumeth.2025.110599","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate modeling of the hemodynamic response is critical for fNIRS data interpretation. While the Balloon model is a cornerstone for this, the quantitative impact of its key parameters on the fNIRS signal, particularly in the presence of realistic artifacts, remains under-characterized.</div></div><div><h3>New method</h3><div>We developed an end-to-end fNIRS simulation pipeline. It incorporates a neural activity model, the Balloon model for hemodynamics, convolution for signal generation, and realistic motion, cardiac, and respiratory artifacts. We performed a sensitivity analysis by systematically varying Grubb's exponent (α) and transit time (τ).</div></div><div><h3>Results</h3><div>Both α and τ significantly influence the simulated fNIRS response. α shows a non-linear relationship with peak amplitude, while τ has a more linear effect on signal timing. Regression models quantifying these effects demonstrated a strong statistical fit (p < 0.05, R² > 0.9 for α).</div></div><div><h3>Comparison with existing methods</h3><div>Unlike prior fMRI-focused studies, this is the first quantitative sensitivity analysis specifically for fNIRS signals that incorporates a realistic noise model. Our framework characterizes the forward model's behavior, providing parameter-specific insights not previously available for fNIRS simulations.</div></div><div><h3>Conclusions</h3><div>The fNIRS hemodynamic response is highly sensitive to the Balloon model's α and τ parameters. These findings highlight the importance of accounting for physiological variability in fNIRS analysis and provide a robust framework for generating synthetic data to test signal processing algorithms.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"424 ","pages":"Article 110599"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity analysis of the balloon model parameters in functional near-infrared spectroscopy simulation\",\"authors\":\"Murad Althobaiti\",\"doi\":\"10.1016/j.jneumeth.2025.110599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Accurate modeling of the hemodynamic response is critical for fNIRS data interpretation. While the Balloon model is a cornerstone for this, the quantitative impact of its key parameters on the fNIRS signal, particularly in the presence of realistic artifacts, remains under-characterized.</div></div><div><h3>New method</h3><div>We developed an end-to-end fNIRS simulation pipeline. It incorporates a neural activity model, the Balloon model for hemodynamics, convolution for signal generation, and realistic motion, cardiac, and respiratory artifacts. We performed a sensitivity analysis by systematically varying Grubb's exponent (α) and transit time (τ).</div></div><div><h3>Results</h3><div>Both α and τ significantly influence the simulated fNIRS response. α shows a non-linear relationship with peak amplitude, while τ has a more linear effect on signal timing. Regression models quantifying these effects demonstrated a strong statistical fit (p < 0.05, R² > 0.9 for α).</div></div><div><h3>Comparison with existing methods</h3><div>Unlike prior fMRI-focused studies, this is the first quantitative sensitivity analysis specifically for fNIRS signals that incorporates a realistic noise model. Our framework characterizes the forward model's behavior, providing parameter-specific insights not previously available for fNIRS simulations.</div></div><div><h3>Conclusions</h3><div>The fNIRS hemodynamic response is highly sensitive to the Balloon model's α and τ parameters. These findings highlight the importance of accounting for physiological variability in fNIRS analysis and provide a robust framework for generating synthetic data to test signal processing algorithms.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"424 \",\"pages\":\"Article 110599\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025002432\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025002432","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Sensitivity analysis of the balloon model parameters in functional near-infrared spectroscopy simulation
Background
Accurate modeling of the hemodynamic response is critical for fNIRS data interpretation. While the Balloon model is a cornerstone for this, the quantitative impact of its key parameters on the fNIRS signal, particularly in the presence of realistic artifacts, remains under-characterized.
New method
We developed an end-to-end fNIRS simulation pipeline. It incorporates a neural activity model, the Balloon model for hemodynamics, convolution for signal generation, and realistic motion, cardiac, and respiratory artifacts. We performed a sensitivity analysis by systematically varying Grubb's exponent (α) and transit time (τ).
Results
Both α and τ significantly influence the simulated fNIRS response. α shows a non-linear relationship with peak amplitude, while τ has a more linear effect on signal timing. Regression models quantifying these effects demonstrated a strong statistical fit (p < 0.05, R² > 0.9 for α).
Comparison with existing methods
Unlike prior fMRI-focused studies, this is the first quantitative sensitivity analysis specifically for fNIRS signals that incorporates a realistic noise model. Our framework characterizes the forward model's behavior, providing parameter-specific insights not previously available for fNIRS simulations.
Conclusions
The fNIRS hemodynamic response is highly sensitive to the Balloon model's α and τ parameters. These findings highlight the importance of accounting for physiological variability in fNIRS analysis and provide a robust framework for generating synthetic data to test signal processing algorithms.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.