{"title":"大型基础设施智能疏散安全分析的人机交互框架","authors":"Tong Lu, Yuxin Zhang, Weikang Xie, Xinyan Huang","doi":"10.1016/j.ress.2025.111695","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing scale and complexity of large urban infrastructures have led to greater pedestrian concentrations and high risks of crowd-related incidents in emergencies. This study develops an Intelligent Evacuation Prediction Tool (IEPTool) with a human-AI interactive framework for evacuation prediction and safety assessment in large infrastructures. The tool is equipped with a deep learning engine trained from a comprehensive evacuation-simulation database of 66 real-life architectural floor plans, including air terminals, exhibition centers, large stadiums, and various stations. By integrating long-short-term memory (LSTM) networks and generative adversarial networks (GANs), key metrics, including evacuation time, the pedestrian flow rate at each exit, and dynamic pedestrian density distribution, are predicted with a high accuracy of over 90 %. Subsequently, a large language model (LLM) is incorporated for interactive risk analysis, enabling intelligent evacuation safety assessments and providing optimization guidance. The integrated graphical user interface allows fast and accurate evaluation of evacuation safety for complex floorplans. This intelligent framework provides practical and reliable support to fire safety design analysis and urban resilience management.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"266 ","pages":"Article 111695"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-AI interactive framework for smart evacuation safety analysis in large infrastructures\",\"authors\":\"Tong Lu, Yuxin Zhang, Weikang Xie, Xinyan Huang\",\"doi\":\"10.1016/j.ress.2025.111695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing scale and complexity of large urban infrastructures have led to greater pedestrian concentrations and high risks of crowd-related incidents in emergencies. This study develops an Intelligent Evacuation Prediction Tool (IEPTool) with a human-AI interactive framework for evacuation prediction and safety assessment in large infrastructures. The tool is equipped with a deep learning engine trained from a comprehensive evacuation-simulation database of 66 real-life architectural floor plans, including air terminals, exhibition centers, large stadiums, and various stations. By integrating long-short-term memory (LSTM) networks and generative adversarial networks (GANs), key metrics, including evacuation time, the pedestrian flow rate at each exit, and dynamic pedestrian density distribution, are predicted with a high accuracy of over 90 %. Subsequently, a large language model (LLM) is incorporated for interactive risk analysis, enabling intelligent evacuation safety assessments and providing optimization guidance. The integrated graphical user interface allows fast and accurate evaluation of evacuation safety for complex floorplans. This intelligent framework provides practical and reliable support to fire safety design analysis and urban resilience management.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"266 \",\"pages\":\"Article 111695\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025008956\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025008956","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Human-AI interactive framework for smart evacuation safety analysis in large infrastructures
The increasing scale and complexity of large urban infrastructures have led to greater pedestrian concentrations and high risks of crowd-related incidents in emergencies. This study develops an Intelligent Evacuation Prediction Tool (IEPTool) with a human-AI interactive framework for evacuation prediction and safety assessment in large infrastructures. The tool is equipped with a deep learning engine trained from a comprehensive evacuation-simulation database of 66 real-life architectural floor plans, including air terminals, exhibition centers, large stadiums, and various stations. By integrating long-short-term memory (LSTM) networks and generative adversarial networks (GANs), key metrics, including evacuation time, the pedestrian flow rate at each exit, and dynamic pedestrian density distribution, are predicted with a high accuracy of over 90 %. Subsequently, a large language model (LLM) is incorporated for interactive risk analysis, enabling intelligent evacuation safety assessments and providing optimization guidance. The integrated graphical user interface allows fast and accurate evaluation of evacuation safety for complex floorplans. This intelligent framework provides practical and reliable support to fire safety design analysis and urban resilience management.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.