为提高1T DRAM的感测裕度,源端提升SiGe存储的设计与分析

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Geon Kim , Jin So , Eungi Hwang , Jun Lee , Garam Kim
{"title":"为提高1T DRAM的感测裕度,源端提升SiGe存储的设计与分析","authors":"Geon Kim ,&nbsp;Jin So ,&nbsp;Eungi Hwang ,&nbsp;Jun Lee ,&nbsp;Garam Kim","doi":"10.1016/j.sse.2025.109258","DOIUrl":null,"url":null,"abstract":"<div><div>As semiconductor devices scale aggressively into the nanoscale regime, one-transistor (1T) dynamic random-access memory (DRAM) has gained attention as a highly scalable alternative to conventional capacitor-based DRAM. By storing charge in the transistor’s floating body, 1T DRAM enables a compact cell design without the need for a separate storage capacitor. However, existing silicon-based 1T DRAM structures suffer from limited charge retention and degraded sensing margin, both of which restrict reliable memory operations. This work proposes a novel 1T DRAM structure featuring a SiGe hole storage region strategically raised near the source side. The SiGe region enhances hole confinement in the storage region and reduces diffusion-driven recombination at the source and drain, resulting in improved sensing performance. Technology computer-aided design (TCAD) simulations demonstrate that the proposed structure achieves up to 14 % improvement in sensing margin compared to conventional designs, along with enhanced read current differentiation. These results validate the effectiveness of the proposed approach and its suitability for next-generation, high-density, low-power memory applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109258"},"PeriodicalIF":1.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of source-side raised SiGe storage for improved sensing margin in 1T DRAM\",\"authors\":\"Geon Kim ,&nbsp;Jin So ,&nbsp;Eungi Hwang ,&nbsp;Jun Lee ,&nbsp;Garam Kim\",\"doi\":\"10.1016/j.sse.2025.109258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As semiconductor devices scale aggressively into the nanoscale regime, one-transistor (1T) dynamic random-access memory (DRAM) has gained attention as a highly scalable alternative to conventional capacitor-based DRAM. By storing charge in the transistor’s floating body, 1T DRAM enables a compact cell design without the need for a separate storage capacitor. However, existing silicon-based 1T DRAM structures suffer from limited charge retention and degraded sensing margin, both of which restrict reliable memory operations. This work proposes a novel 1T DRAM structure featuring a SiGe hole storage region strategically raised near the source side. The SiGe region enhances hole confinement in the storage region and reduces diffusion-driven recombination at the source and drain, resulting in improved sensing performance. Technology computer-aided design (TCAD) simulations demonstrate that the proposed structure achieves up to 14 % improvement in sensing margin compared to conventional designs, along with enhanced read current differentiation. These results validate the effectiveness of the proposed approach and its suitability for next-generation, high-density, low-power memory applications.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109258\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125002035\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125002035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着半导体器件大举向纳米级扩展,单晶体管(1T)动态随机存取存储器(DRAM)作为传统基于电容的DRAM的高可扩展性替代品而受到关注。通过将电荷存储在晶体管的浮动体中,1T DRAM实现了紧凑的电池设计,而无需单独的存储电容器。然而,现有的硅基1T DRAM结构存在电荷保留有限和传感裕度下降的问题,这两者都限制了可靠的存储器操作。这项工作提出了一种新颖的1T DRAM结构,其特点是在源侧附近战略性地增加了SiGe孔存储区域。SiGe区域增强了存储区的空穴约束,减少了源极和漏极的扩散驱动复合,从而提高了传感性能。技术计算机辅助设计(TCAD)仿真表明,与传统设计相比,所提出的结构在传感裕度上提高了14%,同时增强了读取电流的区分。这些结果验证了所提出方法的有效性及其适用于下一代、高密度、低功耗存储器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of source-side raised SiGe storage for improved sensing margin in 1T DRAM
As semiconductor devices scale aggressively into the nanoscale regime, one-transistor (1T) dynamic random-access memory (DRAM) has gained attention as a highly scalable alternative to conventional capacitor-based DRAM. By storing charge in the transistor’s floating body, 1T DRAM enables a compact cell design without the need for a separate storage capacitor. However, existing silicon-based 1T DRAM structures suffer from limited charge retention and degraded sensing margin, both of which restrict reliable memory operations. This work proposes a novel 1T DRAM structure featuring a SiGe hole storage region strategically raised near the source side. The SiGe region enhances hole confinement in the storage region and reduces diffusion-driven recombination at the source and drain, resulting in improved sensing performance. Technology computer-aided design (TCAD) simulations demonstrate that the proposed structure achieves up to 14 % improvement in sensing margin compared to conventional designs, along with enhanced read current differentiation. These results validate the effectiveness of the proposed approach and its suitability for next-generation, high-density, low-power memory applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信