基于transformer的多任务深度学习模型,利用两种不同的高光谱成像同时评估鸡胸肉的TVB-N和TVC含量

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Xiaoxin Li , Mingrui Cai , Zhen Liu , Chengcheng Yin , Xinjie Tan , Jiangtao Wen , Yuxing Han
{"title":"基于transformer的多任务深度学习模型,利用两种不同的高光谱成像同时评估鸡胸肉的TVB-N和TVC含量","authors":"Xiaoxin Li ,&nbsp;Mingrui Cai ,&nbsp;Zhen Liu ,&nbsp;Chengcheng Yin ,&nbsp;Xinjie Tan ,&nbsp;Jiangtao Wen ,&nbsp;Yuxing Han","doi":"10.1016/j.foodchem.2025.146725","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate assessment of freshness is crucial for ensuring quality and safety in the chicken meat industry. This study developed a Multi-task Interleaved Group Transformer Model (MIGTM) integrating dual hyperspectral imaging (HSI) data to simultaneously predict the total volatile basic nitrogen (TVB-N) and total viable count (TVC) in chicken breasts. The MIGTM demonstrated excellent predictive performance with <span><math><msubsup><mi>R</mi><mi>V</mi><mn>2</mn></msubsup></math></span> of 0.9040 and 0.9499 for TVB-N and TVC, respectively, representing improvements of 4.48 % and 1.61 % over optimized chemometric models. Compared with single-task models, the MIGTM exhibited improvements of 1.84 % and 1.40 % for TVB-N and TVC prediction, respectively, while reducing computational cost by 50 %. The MIGTM outperformed existing CNN- and Transformer-based models in accuracy and stability by effectively leveraging complementary information from dual-spectral sources. The MIGTM combined with HSI provides a reliable, nondestructive solution for batch-level chicken freshness detection, offering significant potential for industrial implementation in meat quality assessment.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"496 ","pages":"Article 146725"},"PeriodicalIF":9.8000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-task deep learning model based on transformer for simultaneously evaluating the TVB-N and TVC contents of chicken breasts using two different hyperspectral imaging\",\"authors\":\"Xiaoxin Li ,&nbsp;Mingrui Cai ,&nbsp;Zhen Liu ,&nbsp;Chengcheng Yin ,&nbsp;Xinjie Tan ,&nbsp;Jiangtao Wen ,&nbsp;Yuxing Han\",\"doi\":\"10.1016/j.foodchem.2025.146725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate assessment of freshness is crucial for ensuring quality and safety in the chicken meat industry. This study developed a Multi-task Interleaved Group Transformer Model (MIGTM) integrating dual hyperspectral imaging (HSI) data to simultaneously predict the total volatile basic nitrogen (TVB-N) and total viable count (TVC) in chicken breasts. The MIGTM demonstrated excellent predictive performance with <span><math><msubsup><mi>R</mi><mi>V</mi><mn>2</mn></msubsup></math></span> of 0.9040 and 0.9499 for TVB-N and TVC, respectively, representing improvements of 4.48 % and 1.61 % over optimized chemometric models. Compared with single-task models, the MIGTM exhibited improvements of 1.84 % and 1.40 % for TVB-N and TVC prediction, respectively, while reducing computational cost by 50 %. The MIGTM outperformed existing CNN- and Transformer-based models in accuracy and stability by effectively leveraging complementary information from dual-spectral sources. The MIGTM combined with HSI provides a reliable, nondestructive solution for batch-level chicken freshness detection, offering significant potential for industrial implementation in meat quality assessment.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"496 \",\"pages\":\"Article 146725\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625039779\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625039779","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

准确的新鲜度评估对于确保鸡肉行业的质量和安全至关重要。利用双高光谱成像(HSI)数据,建立了鸡胸肉中挥发性碱性氮(TVB-N)和总活菌数(TVC)的多任务交织群变换模型(MIGTM)。MIGTM对TVB-N和TVC的RV2RV2分别为0.9040和0.9499,比优化后的化学计量模型分别提高了4.48 %和1.61 %。与单任务模型相比,MIGTM在TVB-N和TVC预测方面分别提高了1.84 %和1.40 %,同时计算成本降低了50% %。通过有效利用双光谱源的互补信息,MIGTM在精度和稳定性方面优于现有的基于CNN和transformer的模型。与HSI相结合的MIGTM为批量级鸡肉新鲜度检测提供了可靠的、无损的解决方案,为肉类质量评估的工业实施提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multi-task deep learning model based on transformer for simultaneously evaluating the TVB-N and TVC contents of chicken breasts using two different hyperspectral imaging

A multi-task deep learning model based on transformer for simultaneously evaluating the TVB-N and TVC contents of chicken breasts using two different hyperspectral imaging
Accurate assessment of freshness is crucial for ensuring quality and safety in the chicken meat industry. This study developed a Multi-task Interleaved Group Transformer Model (MIGTM) integrating dual hyperspectral imaging (HSI) data to simultaneously predict the total volatile basic nitrogen (TVB-N) and total viable count (TVC) in chicken breasts. The MIGTM demonstrated excellent predictive performance with RV2 of 0.9040 and 0.9499 for TVB-N and TVC, respectively, representing improvements of 4.48 % and 1.61 % over optimized chemometric models. Compared with single-task models, the MIGTM exhibited improvements of 1.84 % and 1.40 % for TVB-N and TVC prediction, respectively, while reducing computational cost by 50 %. The MIGTM outperformed existing CNN- and Transformer-based models in accuracy and stability by effectively leveraging complementary information from dual-spectral sources. The MIGTM combined with HSI provides a reliable, nondestructive solution for batch-level chicken freshness detection, offering significant potential for industrial implementation in meat quality assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信