Ronald Wijermars;Yi-Han Ou-Yang;Sijun Du;Dante G. Muratore
{"title":"一个40.68 mhz, 200-ns沉降有源整流器毫米大小的植入物","authors":"Ronald Wijermars;Yi-Han Ou-Yang;Sijun Du;Dante G. Muratore","doi":"10.1109/LSSC.2025.3611484","DOIUrl":null,"url":null,"abstract":"This letter describes a fast-settling active rectifier for a 40.68 MHz wireless power transfer receiver for implantable applications. Fast-settling and low power are achieved through a novel direct voltage-domain compensation technique. The rectifier maintains high efficiency during load and link variations required for downlink communication. The system was fabricated in 40nm CMOS and achieves a voltage conversion ratio of 93.9% and a simulated power conversion efficiency of 90.1% in a 0.19 mm2 area, resulting in a 118 mW/mm2 power density while integrating the resonance and filter capacitors. The worst-case settling of the ON- and OFF-delay compensation in the active rectifier is 200 ns, which is the fastest reported to date.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"305-308"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 40.68-MHz, 200-ns-Settling Active Rectifier for mm-Sized Implants\",\"authors\":\"Ronald Wijermars;Yi-Han Ou-Yang;Sijun Du;Dante G. Muratore\",\"doi\":\"10.1109/LSSC.2025.3611484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter describes a fast-settling active rectifier for a 40.68 MHz wireless power transfer receiver for implantable applications. Fast-settling and low power are achieved through a novel direct voltage-domain compensation technique. The rectifier maintains high efficiency during load and link variations required for downlink communication. The system was fabricated in 40nm CMOS and achieves a voltage conversion ratio of 93.9% and a simulated power conversion efficiency of 90.1% in a 0.19 mm2 area, resulting in a 118 mW/mm2 power density while integrating the resonance and filter capacitors. The worst-case settling of the ON- and OFF-delay compensation in the active rectifier is 200 ns, which is the fastest reported to date.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"305-308\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11172323/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11172323/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A 40.68-MHz, 200-ns-Settling Active Rectifier for mm-Sized Implants
This letter describes a fast-settling active rectifier for a 40.68 MHz wireless power transfer receiver for implantable applications. Fast-settling and low power are achieved through a novel direct voltage-domain compensation technique. The rectifier maintains high efficiency during load and link variations required for downlink communication. The system was fabricated in 40nm CMOS and achieves a voltage conversion ratio of 93.9% and a simulated power conversion efficiency of 90.1% in a 0.19 mm2 area, resulting in a 118 mW/mm2 power density while integrating the resonance and filter capacitors. The worst-case settling of the ON- and OFF-delay compensation in the active rectifier is 200 ns, which is the fastest reported to date.