概率导向动态融合多任务(PDFM)质谱分类框架。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Yinchu Wang,Wei Zhang,Zilong Liu,Lin Guo,Xingchuang Xiong
{"title":"概率导向动态融合多任务(PDFM)质谱分类框架。","authors":"Yinchu Wang,Wei Zhang,Zilong Liu,Lin Guo,Xingchuang Xiong","doi":"10.1021/acs.analchem.5c04933","DOIUrl":null,"url":null,"abstract":"Traditional deep learning models (e.g., convolutional neural networks (CNNs) and transformers) often rely on deterministic feature representations, fixed feature fusion mechanisms, and single-task optimization, which limit their effectiveness in accurately classifying mass spectrometry (MS) data. This study proposes PDFM, a progressive framework for MS data classification, implemented via the VAE-TDW architecture. VAE models latent distributions to guide peak attention, while dynamic weights adaptively fuse global (VAE) and local (Transformer) features. A reconstruction branch and adversarial samples enhance robustness. The multiobjective loss integrates classification, reconstruction, and distribution alignment. Evaluations show a 4.73% accuracy gain on six batch-effect-free data sets; 3.49%-4.66% cross-batch improvement; and up to a 44.07% F1-score boost for rare categories in small samples. PDFM represents a novel approach for the precise analysis of mass spectrometry data, demonstrating substantial potential to advance translational applications in biomedicine and clinical diagnostics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"125 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic-Guided Dynamic Fusion Multitask (PDFM) Framework for Mass Spectrometry Classification.\",\"authors\":\"Yinchu Wang,Wei Zhang,Zilong Liu,Lin Guo,Xingchuang Xiong\",\"doi\":\"10.1021/acs.analchem.5c04933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional deep learning models (e.g., convolutional neural networks (CNNs) and transformers) often rely on deterministic feature representations, fixed feature fusion mechanisms, and single-task optimization, which limit their effectiveness in accurately classifying mass spectrometry (MS) data. This study proposes PDFM, a progressive framework for MS data classification, implemented via the VAE-TDW architecture. VAE models latent distributions to guide peak attention, while dynamic weights adaptively fuse global (VAE) and local (Transformer) features. A reconstruction branch and adversarial samples enhance robustness. The multiobjective loss integrates classification, reconstruction, and distribution alignment. Evaluations show a 4.73% accuracy gain on six batch-effect-free data sets; 3.49%-4.66% cross-batch improvement; and up to a 44.07% F1-score boost for rare categories in small samples. PDFM represents a novel approach for the precise analysis of mass spectrometry data, demonstrating substantial potential to advance translational applications in biomedicine and clinical diagnostics.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c04933\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c04933","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

传统的深度学习模型(如卷积神经网络(cnn)和变压器)通常依赖于确定性特征表示、固定特征融合机制和单任务优化,这限制了它们在准确分类质谱(MS)数据方面的有效性。本研究提出PDFM,一个渐进式的MS数据分类框架,通过VAE-TDW架构实现。VAE建模潜在分布来引导峰值注意力,而动态权重自适应融合全局(VAE)和局部(Transformer)特征。重建分支和对抗样本增强了鲁棒性。多目标损失集分类、重建和分布对齐于一体。评估显示,在6个无批效应的数据集上,准确率提高了4.73%;3.49%-4.66%跨批改进;在小样本中,罕见类别的f1分数提升高达44.07%。PDFM代表了一种精确分析质谱数据的新方法,展示了在生物医学和临床诊断中推进转化应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic-Guided Dynamic Fusion Multitask (PDFM) Framework for Mass Spectrometry Classification.
Traditional deep learning models (e.g., convolutional neural networks (CNNs) and transformers) often rely on deterministic feature representations, fixed feature fusion mechanisms, and single-task optimization, which limit their effectiveness in accurately classifying mass spectrometry (MS) data. This study proposes PDFM, a progressive framework for MS data classification, implemented via the VAE-TDW architecture. VAE models latent distributions to guide peak attention, while dynamic weights adaptively fuse global (VAE) and local (Transformer) features. A reconstruction branch and adversarial samples enhance robustness. The multiobjective loss integrates classification, reconstruction, and distribution alignment. Evaluations show a 4.73% accuracy gain on six batch-effect-free data sets; 3.49%-4.66% cross-batch improvement; and up to a 44.07% F1-score boost for rare categories in small samples. PDFM represents a novel approach for the precise analysis of mass spectrometry data, demonstrating substantial potential to advance translational applications in biomedicine and clinical diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信