{"title":"分泌代谢物传感器CtBP2将代谢与健康寿命联系起来。","authors":"Motohiro Sekiya, Kenta Kainoh, Wanpei Chen, Daichi Yamazaki, Tomomi Tsuyuzaki, Yuto Kobari, Ayumi Nakata, Kenji Saito, Nao Aono-Soma, Ali Majid, Hiroshi Ohno, Takafumi Miyamoto, Takashi Matsuzaka, Rikako Nakajima, Takaaki Matsuda, Yuki Murayama, Yoko Sugano, Yoshinori Osaki, Hitoshi Iwasaki, Hitoshi Shimano","doi":"10.1038/s43587-025-00973-4","DOIUrl":null,"url":null,"abstract":"<p><p>Within each cell, metabolite-sensing factors respond to coordinate metabolic homeostasis. How metabolic homeostasis is regulated intercellularly and how this may become dysregulated with age, however, remains underexplored. Here we describe a system regulated by a metabolite sensor, CtBP2. CtBP2 is secreted via exosomes in response to reductive metabolism, which is suppressed by oxidative stress. Exosomal CtBP2 administration extends lifespan in aged mice and improves healthspan in particular by reducing frailty. Mechanistically, we identify activation of CYB5R3 and AMPK downstream of exosomal CtBP2. Consistently, serum CtBP2 levels decrease with age and are negatively associated with cardiovascular disease incidence in humans yet are elevated in individuals from families with a history of longevity. Together our findings define a CtBP2-mediated metabolic system with potential for future clinical applications.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":19.4000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The secreted metabolite sensor CtBP2 links metabolism to healthy lifespan.\",\"authors\":\"Motohiro Sekiya, Kenta Kainoh, Wanpei Chen, Daichi Yamazaki, Tomomi Tsuyuzaki, Yuto Kobari, Ayumi Nakata, Kenji Saito, Nao Aono-Soma, Ali Majid, Hiroshi Ohno, Takafumi Miyamoto, Takashi Matsuzaka, Rikako Nakajima, Takaaki Matsuda, Yuki Murayama, Yoko Sugano, Yoshinori Osaki, Hitoshi Iwasaki, Hitoshi Shimano\",\"doi\":\"10.1038/s43587-025-00973-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Within each cell, metabolite-sensing factors respond to coordinate metabolic homeostasis. How metabolic homeostasis is regulated intercellularly and how this may become dysregulated with age, however, remains underexplored. Here we describe a system regulated by a metabolite sensor, CtBP2. CtBP2 is secreted via exosomes in response to reductive metabolism, which is suppressed by oxidative stress. Exosomal CtBP2 administration extends lifespan in aged mice and improves healthspan in particular by reducing frailty. Mechanistically, we identify activation of CYB5R3 and AMPK downstream of exosomal CtBP2. Consistently, serum CtBP2 levels decrease with age and are negatively associated with cardiovascular disease incidence in humans yet are elevated in individuals from families with a history of longevity. Together our findings define a CtBP2-mediated metabolic system with potential for future clinical applications.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-025-00973-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-025-00973-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The secreted metabolite sensor CtBP2 links metabolism to healthy lifespan.
Within each cell, metabolite-sensing factors respond to coordinate metabolic homeostasis. How metabolic homeostasis is regulated intercellularly and how this may become dysregulated with age, however, remains underexplored. Here we describe a system regulated by a metabolite sensor, CtBP2. CtBP2 is secreted via exosomes in response to reductive metabolism, which is suppressed by oxidative stress. Exosomal CtBP2 administration extends lifespan in aged mice and improves healthspan in particular by reducing frailty. Mechanistically, we identify activation of CYB5R3 and AMPK downstream of exosomal CtBP2. Consistently, serum CtBP2 levels decrease with age and are negatively associated with cardiovascular disease incidence in humans yet are elevated in individuals from families with a history of longevity. Together our findings define a CtBP2-mediated metabolic system with potential for future clinical applications.