具有低电阻金属触点的高性能单层1T - GeO2晶体管

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Lang, Wei Zhang, Shun Song, Shaoqiang Guo, Haishan Zhang, Juan Lyu, Jian Gong
{"title":"具有低电阻金属触点的高性能单层1T - GeO2晶体管","authors":"Shuai Lang, Wei Zhang, Shun Song, Shaoqiang Guo, Haishan Zhang, Juan Lyu, Jian Gong","doi":"10.1002/aelm.202500407","DOIUrl":null,"url":null,"abstract":"As silicon‐based electronics approach their scaling limits in the post‐Moore era, 2D semiconductors offer a promising path forward. In this study, first‐principles calculations are employed, combined with quantum transport simulations to predict that monolayer 1T‐phase germanium dioxide (1T‐GeO<jats:sub>2</jats:sub>) is an exceptional channel material due to its favorable metal–semiconductor interface properties. Through systematic contact engineering analysis, it is revealed that conventional metals—including Au, Pt, Pd, Ag, Ti, In—form ideal Ohmic contacts with 1T‐GeO<jats:sub>2</jats:sub>, exhibiting ultralow contact resistances of 35.33–54.03 Ω·µm. Notably, these simulations predict that 1T‐GeO<jats:sub>2</jats:sub>‐based field‐effect transistors (FETs) with Pd, Au, Ti, and Pt contacts exhibit ultrahigh on‐state currents of up to 1151–3237 nA nm<jats:sup>−1</jats:sup> at an 8.5 nm channel length, surpassing the 2028 performance targets set by the International Roadmap for Devices and Systems (IRDS). These performance advantages originate from the intrinsic electronic properties of the metal/1T‐GeO<jats:sub>2</jats:sub> interfaces, including small electron effective mass, weak Fermi‐level pinning, moderate orbital overlaps, absence of Schottky barriers, and low tunnel barriers, which enable both efficient carrier injection and excellent channel transport. These results suggest that 1T‐GeO<jats:sub>2</jats:sub> is a leading 2D semiconductor candidate for scalable, high‐performance, and energy‐efficient transistors beyond conventional silicon technology.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐Performance Monolayer 1T‐GeO2 Transistors with Low‐Resistance Metal Contacts\",\"authors\":\"Shuai Lang, Wei Zhang, Shun Song, Shaoqiang Guo, Haishan Zhang, Juan Lyu, Jian Gong\",\"doi\":\"10.1002/aelm.202500407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As silicon‐based electronics approach their scaling limits in the post‐Moore era, 2D semiconductors offer a promising path forward. In this study, first‐principles calculations are employed, combined with quantum transport simulations to predict that monolayer 1T‐phase germanium dioxide (1T‐GeO<jats:sub>2</jats:sub>) is an exceptional channel material due to its favorable metal–semiconductor interface properties. Through systematic contact engineering analysis, it is revealed that conventional metals—including Au, Pt, Pd, Ag, Ti, In—form ideal Ohmic contacts with 1T‐GeO<jats:sub>2</jats:sub>, exhibiting ultralow contact resistances of 35.33–54.03 Ω·µm. Notably, these simulations predict that 1T‐GeO<jats:sub>2</jats:sub>‐based field‐effect transistors (FETs) with Pd, Au, Ti, and Pt contacts exhibit ultrahigh on‐state currents of up to 1151–3237 nA nm<jats:sup>−1</jats:sup> at an 8.5 nm channel length, surpassing the 2028 performance targets set by the International Roadmap for Devices and Systems (IRDS). These performance advantages originate from the intrinsic electronic properties of the metal/1T‐GeO<jats:sub>2</jats:sub> interfaces, including small electron effective mass, weak Fermi‐level pinning, moderate orbital overlaps, absence of Schottky barriers, and low tunnel barriers, which enable both efficient carrier injection and excellent channel transport. These results suggest that 1T‐GeO<jats:sub>2</jats:sub> is a leading 2D semiconductor candidate for scalable, high‐performance, and energy‐efficient transistors beyond conventional silicon technology.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500407\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500407","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着硅基电子产品在后摩尔时代接近其缩放极限,二维半导体提供了一条有前途的发展道路。在这项研究中,采用第一性原理计算,结合量子输运模拟,预测单层1T相二氧化锗(1T - GeO2)由于其良好的金属-半导体界面特性而成为一种特殊的通道材料。通过系统的接触工程分析,发现传统金属(Au、Pt、Pd、Ag、Ti)与1T‐GeO2形成理想的欧姆接触,接触电阻为35.33 ~ 54.03 Ω·µm。值得注意的是,这些模拟预测了具有Pd、Au、Ti和Pt触点的基于1T - GeO2的场效应晶体管(fet)在8.5 nm通道长度下表现出高达1151-3237 nA nm - 1的超高导通状态电流,超过了国际器件和系统路线图(IRDS)设定的2028年性能目标。这些性能优势源于金属/1T‐GeO2界面的固有电子特性,包括小的电子有效质量,弱费米能级钉住,适度的轨道重叠,没有肖特基势垒和低隧道势垒,这既能实现高效的载流子注入,又能实现优异的通道输运。这些结果表明,1T‐GeO2是一种领先的2D半导体候选材料,可用于超越传统硅技术的可扩展、高性能和节能晶体管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High‐Performance Monolayer 1T‐GeO2 Transistors with Low‐Resistance Metal Contacts
As silicon‐based electronics approach their scaling limits in the post‐Moore era, 2D semiconductors offer a promising path forward. In this study, first‐principles calculations are employed, combined with quantum transport simulations to predict that monolayer 1T‐phase germanium dioxide (1T‐GeO2) is an exceptional channel material due to its favorable metal–semiconductor interface properties. Through systematic contact engineering analysis, it is revealed that conventional metals—including Au, Pt, Pd, Ag, Ti, In—form ideal Ohmic contacts with 1T‐GeO2, exhibiting ultralow contact resistances of 35.33–54.03 Ω·µm. Notably, these simulations predict that 1T‐GeO2‐based field‐effect transistors (FETs) with Pd, Au, Ti, and Pt contacts exhibit ultrahigh on‐state currents of up to 1151–3237 nA nm−1 at an 8.5 nm channel length, surpassing the 2028 performance targets set by the International Roadmap for Devices and Systems (IRDS). These performance advantages originate from the intrinsic electronic properties of the metal/1T‐GeO2 interfaces, including small electron effective mass, weak Fermi‐level pinning, moderate orbital overlaps, absence of Schottky barriers, and low tunnel barriers, which enable both efficient carrier injection and excellent channel transport. These results suggest that 1T‐GeO2 is a leading 2D semiconductor candidate for scalable, high‐performance, and energy‐efficient transistors beyond conventional silicon technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信