{"title":"用于NIR-II荧光成像和光动力治疗结肠癌的h2s活化纳米剂。","authors":"Diedie Cheng,Yi Feng,Yanbo Liu,Jingjing Zhao,Jiamin Xiong,Guangjin Gao,Weiwei Xu,Meng Zhao,Qingqing Miao,Qing Li","doi":"10.1021/acs.analchem.5c04539","DOIUrl":null,"url":null,"abstract":"Colon cancer poses a serious health threat due to its asymptomatic early progression, recurrence rate, and the limited efficacy of current diagnostic and therapeutic strategies, highlighting the urgent need for noninvasive and effective theranostic methods. Photosensitizers capable of integrating NIR-II fluorescence imaging with photodynamic therapy (PDT) in a single platform offer a promising solution but often suffer from inadequate specificity, leading to off-target effects and reduced theranostic accuracy. In this study, we exploit the elevated H2S levels in the colonic tumor microenvironment to develop a H2S-activatable NIR-II phototheranostic nanoplatform for the precise diagnosis and treatment of colon cancer. This nanoplatform is based on an optimized NIR-II fluorescent photosensitizer that is caged with H2S-cleavable 2,4-dinitrophenyl groups and then is coassembled with amphiphilic polymers to form the water-dispersible nanoparticles (BIS-NPs). Upon exposure to H2S, BIS-NPs exhibit selective activation of NIR-II fluorescence and singlet oxygen (1O2) generation under 808 nm laser irradiation. Systematic evaluation in CT26 tumor-bearing mice demonstrates that BIS-NPs enable tumor-specific NIR-II fluorescence imaging and efficient PDT performance, confirming their potential as a precise and effective phototheranostic tool for colon cancer management.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"29 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2S-Activatable Nanoagent for NIR-II Fluorescence Imaging and Photodynamic Therapy of Colon Cancer.\",\"authors\":\"Diedie Cheng,Yi Feng,Yanbo Liu,Jingjing Zhao,Jiamin Xiong,Guangjin Gao,Weiwei Xu,Meng Zhao,Qingqing Miao,Qing Li\",\"doi\":\"10.1021/acs.analchem.5c04539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colon cancer poses a serious health threat due to its asymptomatic early progression, recurrence rate, and the limited efficacy of current diagnostic and therapeutic strategies, highlighting the urgent need for noninvasive and effective theranostic methods. Photosensitizers capable of integrating NIR-II fluorescence imaging with photodynamic therapy (PDT) in a single platform offer a promising solution but often suffer from inadequate specificity, leading to off-target effects and reduced theranostic accuracy. In this study, we exploit the elevated H2S levels in the colonic tumor microenvironment to develop a H2S-activatable NIR-II phototheranostic nanoplatform for the precise diagnosis and treatment of colon cancer. This nanoplatform is based on an optimized NIR-II fluorescent photosensitizer that is caged with H2S-cleavable 2,4-dinitrophenyl groups and then is coassembled with amphiphilic polymers to form the water-dispersible nanoparticles (BIS-NPs). Upon exposure to H2S, BIS-NPs exhibit selective activation of NIR-II fluorescence and singlet oxygen (1O2) generation under 808 nm laser irradiation. Systematic evaluation in CT26 tumor-bearing mice demonstrates that BIS-NPs enable tumor-specific NIR-II fluorescence imaging and efficient PDT performance, confirming their potential as a precise and effective phototheranostic tool for colon cancer management.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c04539\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c04539","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
H2S-Activatable Nanoagent for NIR-II Fluorescence Imaging and Photodynamic Therapy of Colon Cancer.
Colon cancer poses a serious health threat due to its asymptomatic early progression, recurrence rate, and the limited efficacy of current diagnostic and therapeutic strategies, highlighting the urgent need for noninvasive and effective theranostic methods. Photosensitizers capable of integrating NIR-II fluorescence imaging with photodynamic therapy (PDT) in a single platform offer a promising solution but often suffer from inadequate specificity, leading to off-target effects and reduced theranostic accuracy. In this study, we exploit the elevated H2S levels in the colonic tumor microenvironment to develop a H2S-activatable NIR-II phototheranostic nanoplatform for the precise diagnosis and treatment of colon cancer. This nanoplatform is based on an optimized NIR-II fluorescent photosensitizer that is caged with H2S-cleavable 2,4-dinitrophenyl groups and then is coassembled with amphiphilic polymers to form the water-dispersible nanoparticles (BIS-NPs). Upon exposure to H2S, BIS-NPs exhibit selective activation of NIR-II fluorescence and singlet oxygen (1O2) generation under 808 nm laser irradiation. Systematic evaluation in CT26 tumor-bearing mice demonstrates that BIS-NPs enable tumor-specific NIR-II fluorescence imaging and efficient PDT performance, confirming their potential as a precise and effective phototheranostic tool for colon cancer management.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.