基于分布鲁棒反馈的不完全信息动态Stackelberg均衡寻求。

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Longcheng Liu,Shuai Liu,Haotian Xu,Daniel E Quevedo
{"title":"基于分布鲁棒反馈的不完全信息动态Stackelberg均衡寻求。","authors":"Longcheng Liu,Shuai Liu,Haotian Xu,Daniel E Quevedo","doi":"10.1109/tcyb.2025.3613827","DOIUrl":null,"url":null,"abstract":"This article investigates a multileader Stackelberg game where leaders lack critical information about the follower's objective function and face random disturbances with unknown distributions. Unlike conventional approaches requiring complete follower information, we consider leaders who manipulate physical plant states while observing the follower's strategy through private tracking responders. To address distributional uncertainty in the follower's best response, we reformulate the game as a distributionally robust equilibrium-seeking problem and develop a fully distributed FL algorithm. The proposed data-driven approach operates without prior knowledge of system models or disturbance distributions, enabling leaders to estimate states through neighbor communication and local gradient updates. We characterize equilibrium existence in nonconvex settings. The relationship between communication and gradient errors and the energy function of the dynamic system is established. The upper bound of the regret based on the proposed algorithm is rigorously analyzed. A case study demonstrates the framework's effectiveness in achieving distributionally robust solutions against uncertain stochastic perturbations.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"106 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incomplete-Information Dynamic Stackelberg Equilibrium Seeking by A Distributed Distributionally Robust Feedback Approach.\",\"authors\":\"Longcheng Liu,Shuai Liu,Haotian Xu,Daniel E Quevedo\",\"doi\":\"10.1109/tcyb.2025.3613827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates a multileader Stackelberg game where leaders lack critical information about the follower's objective function and face random disturbances with unknown distributions. Unlike conventional approaches requiring complete follower information, we consider leaders who manipulate physical plant states while observing the follower's strategy through private tracking responders. To address distributional uncertainty in the follower's best response, we reformulate the game as a distributionally robust equilibrium-seeking problem and develop a fully distributed FL algorithm. The proposed data-driven approach operates without prior knowledge of system models or disturbance distributions, enabling leaders to estimate states through neighbor communication and local gradient updates. We characterize equilibrium existence in nonconvex settings. The relationship between communication and gradient errors and the energy function of the dynamic system is established. The upper bound of the regret based on the proposed algorithm is rigorously analyzed. A case study demonstrates the framework's effectiveness in achieving distributionally robust solutions against uncertain stochastic perturbations.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tcyb.2025.3613827\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tcyb.2025.3613827","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个多领导者Stackelberg博弈,其中领导者缺乏关于追随者目标函数的关键信息,并且面临未知分布的随机干扰。与传统方法需要完整的追随者信息不同,我们考虑了领导者在操纵物理工厂状态的同时,通过私人跟踪响应者观察追随者的策略。为了解决追随者最佳响应中的分布不确定性,我们将博弈重新表述为一个分布鲁棒均衡寻求问题,并开发了一个完全分布的FL算法。所提出的数据驱动方法无需预先了解系统模型或干扰分布,使领导者能够通过邻居通信和局部梯度更新来估计状态。我们刻画了非凸环境下的平衡存在。建立了通信和梯度误差与动态系统能量函数的关系。严格分析了基于所提算法的遗憾上界。一个实例研究证明了该框架在获得不确定随机扰动的分布鲁棒解方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incomplete-Information Dynamic Stackelberg Equilibrium Seeking by A Distributed Distributionally Robust Feedback Approach.
This article investigates a multileader Stackelberg game where leaders lack critical information about the follower's objective function and face random disturbances with unknown distributions. Unlike conventional approaches requiring complete follower information, we consider leaders who manipulate physical plant states while observing the follower's strategy through private tracking responders. To address distributional uncertainty in the follower's best response, we reformulate the game as a distributionally robust equilibrium-seeking problem and develop a fully distributed FL algorithm. The proposed data-driven approach operates without prior knowledge of system models or disturbance distributions, enabling leaders to estimate states through neighbor communication and local gradient updates. We characterize equilibrium existence in nonconvex settings. The relationship between communication and gradient errors and the energy function of the dynamic system is established. The upper bound of the regret based on the proposed algorithm is rigorously analyzed. A case study demonstrates the framework's effectiveness in achieving distributionally robust solutions against uncertain stochastic perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信