通过三重预激活随机残余行星卷积耦合注意网络和接触图预测药物靶标亲和力。

IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan
{"title":"通过三重预激活随机残余行星卷积耦合注意网络和接触图预测药物靶标亲和力。","authors":"M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan","doi":"10.1007/s10822-025-00667-4","DOIUrl":null,"url":null,"abstract":"<p><p>Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":"91"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting drug-target affinity through triple pre-activated random residual planet convolution coupled attention network and contact maps.\",\"authors\":\"M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan\",\"doi\":\"10.1007/s10822-025-00667-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.</p>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"91\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10822-025-00667-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10822-025-00667-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

药物发现依赖于预测药物靶标亲和力(DTA)的能力,这允许对某些蛋白质靶标的候选药物进行有效鉴定。可伸缩性、准确性和可解释性是传统方法必须处理的问题。为了提高预测精度,本研究提出了一种将接触图表示与三重预激活随机残差行星卷积注意网络(Tri-Pre-A2RP-2CAN)相结合的复杂方法。DTA、KIBA和Davis数据集是输入数据的来源。预处理采用焦视觉变压器和Gabor滤波器进行特征增强。特征提取使用双聚合转换器(DAT)来捕获复杂的分子和蛋白质模式。建模框架结合了Tri-Pre-A2RP-2CAN和RCNN,采用PACRTAMN架构和基于Planet优化的超参数调优进行了优化。这种创新的方法达到99.9%的准确率,优于现有的药物-靶标相互作用建模方法。它增强了DTA预测,改进了分子相互作用分析,并优化了药物发现过程,为制药进步提供了可扩展和可解释的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting drug-target affinity through triple pre-activated random residual planet convolution coupled attention network and contact maps.

Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信