M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan
{"title":"通过三重预激活随机残余行星卷积耦合注意网络和接触图预测药物靶标亲和力。","authors":"M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan","doi":"10.1007/s10822-025-00667-4","DOIUrl":null,"url":null,"abstract":"<p><p>Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.</p>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":"91"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting drug-target affinity through triple pre-activated random residual planet convolution coupled attention network and contact maps.\",\"authors\":\"M Sudha, B Senthilnayaki, K Padmanaban, L Guganathan\",\"doi\":\"10.1007/s10822-025-00667-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.</p>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"91\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10822-025-00667-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10822-025-00667-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Predicting drug-target affinity through triple pre-activated random residual planet convolution coupled attention network and contact maps.
Drug discovery relies on the ability to predict drug-target affinity (DTA), which allows for the efficient identification of drug candidates for certain protein targets. Scalability, accuracy, and interpretability are issues that traditional methods must deal with. In order to improve prediction accuracy, this study proposes a sophisticated approach that combines contact map representations with the Triple Pre-Activated Random Residual Planet Convolution Attention Network (Tri-Pre-A2RP-2CAN). The DTA, KIBA, and Davis datasets are the sources of the input data. Preprocessing employs Focal Vision Transformer with a Gabor Filter for feature enhancement. Feature extraction uses a Dual-Aggregation Transformer (DAT) to capture complex molecular and protein patterns. The modeling framework incorporates Tri-Pre-A2RP-2CAN and RCNN, optimized with PACRTAMN architecture and Planet optimization based hyperparameter tuning. This innovative approach achieves 99.9% accuracy, outperforming existing methods in modeling drug-target interactions. It enhances DTA prediction, improves molecular interaction analysis, and optimizes drug discovery processes, offering scalable and interpretable solutions for pharmaceutical advancements.
期刊介绍:
The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas:
- theoretical chemistry;
- computational chemistry;
- computer and molecular graphics;
- molecular modeling;
- protein engineering;
- drug design;
- expert systems;
- general structure-property relationships;
- molecular dynamics;
- chemical database development and usage.