{"title":"估计时间序列的执行摘要:趋势。","authors":"Caio Alves, Juan M Restrepo, Jorge M Ramirez","doi":"10.1080/02664763.2025.2475351","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we revisit the problem of decomposing a signal into a tendency and a residual. The tendency describes an executive summary of a signal that encapsulates its notable characteristics while disregarding seemingly random, less interesting aspects. Building upon the Intrinsic Time Decomposition (ITD) and information-theoretical analysis, we introduce two alternative procedures for selecting the tendency from the ITD baselines. The first is based on the maximum extrema prominence, namely the maximum difference between extrema within each baseline. Specifically this method selects the tendency as the baseline from which an ITD step would produce the largest decline of the maximum prominence. The second method uses the rotations from the ITD and selects the tendency as the last baseline for which the associated rotation is statistically stationary. We delve into a comparative analysis of the information content and interpretability of the tendencies obtained by our proposed methods and those obtained through conventional low-pass filtering schemes, particularly the Hodrik-Prescott (HP) filter. Our findings underscore a fundamental distinction in the nature and interpretability of these tendencies, highlighting their context-dependent utility with emphasis in multi-scale signals. Through a series of real-world applications, we demonstrate the computational robustness and practical utility of our proposed tendencies, emphasizing their adaptability and relevance in diverse time series contexts.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 13","pages":"2478-2494"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490379/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating an executive summary of a time series: the tendency.\",\"authors\":\"Caio Alves, Juan M Restrepo, Jorge M Ramirez\",\"doi\":\"10.1080/02664763.2025.2475351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we revisit the problem of decomposing a signal into a tendency and a residual. The tendency describes an executive summary of a signal that encapsulates its notable characteristics while disregarding seemingly random, less interesting aspects. Building upon the Intrinsic Time Decomposition (ITD) and information-theoretical analysis, we introduce two alternative procedures for selecting the tendency from the ITD baselines. The first is based on the maximum extrema prominence, namely the maximum difference between extrema within each baseline. Specifically this method selects the tendency as the baseline from which an ITD step would produce the largest decline of the maximum prominence. The second method uses the rotations from the ITD and selects the tendency as the last baseline for which the associated rotation is statistically stationary. We delve into a comparative analysis of the information content and interpretability of the tendencies obtained by our proposed methods and those obtained through conventional low-pass filtering schemes, particularly the Hodrik-Prescott (HP) filter. Our findings underscore a fundamental distinction in the nature and interpretability of these tendencies, highlighting their context-dependent utility with emphasis in multi-scale signals. Through a series of real-world applications, we demonstrate the computational robustness and practical utility of our proposed tendencies, emphasizing their adaptability and relevance in diverse time series contexts.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 13\",\"pages\":\"2478-2494\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490379/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2475351\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2475351","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Estimating an executive summary of a time series: the tendency.
In this paper, we revisit the problem of decomposing a signal into a tendency and a residual. The tendency describes an executive summary of a signal that encapsulates its notable characteristics while disregarding seemingly random, less interesting aspects. Building upon the Intrinsic Time Decomposition (ITD) and information-theoretical analysis, we introduce two alternative procedures for selecting the tendency from the ITD baselines. The first is based on the maximum extrema prominence, namely the maximum difference between extrema within each baseline. Specifically this method selects the tendency as the baseline from which an ITD step would produce the largest decline of the maximum prominence. The second method uses the rotations from the ITD and selects the tendency as the last baseline for which the associated rotation is statistically stationary. We delve into a comparative analysis of the information content and interpretability of the tendencies obtained by our proposed methods and those obtained through conventional low-pass filtering schemes, particularly the Hodrik-Prescott (HP) filter. Our findings underscore a fundamental distinction in the nature and interpretability of these tendencies, highlighting their context-dependent utility with emphasis in multi-scale signals. Through a series of real-world applications, we demonstrate the computational robustness and practical utility of our proposed tendencies, emphasizing their adaptability and relevance in diverse time series contexts.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.