混合泊松INGARCH模型的诊断分析及其应用。

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2025.2476658
Wenjie Dang, Fukang Zhu, Nuo Xu, Shuangzhe Liu
{"title":"混合泊松INGARCH模型的诊断分析及其应用。","authors":"Wenjie Dang, Fukang Zhu, Nuo Xu, Shuangzhe Liu","doi":"10.1080/02664763.2025.2476658","DOIUrl":null,"url":null,"abstract":"<p><p>In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 13","pages":"2495-2523"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490395/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diagnostic analytics for the mixed Poisson INGARCH model with applications.\",\"authors\":\"Wenjie Dang, Fukang Zhu, Nuo Xu, Shuangzhe Liu\",\"doi\":\"10.1080/02664763.2025.2476658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 13\",\"pages\":\"2495-2523\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490395/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2476658\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2476658","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在统计诊断和敏感性分析中,局部影响法起着至关重要的作用,有时比其他方法更有优势。在混合泊松分布的柔性族基础上建立了混合泊松整值广义自回归条件异方差(INGARCH)模型。它不仅包含负二项INGARCH模型,而且还允许引入泊松逆高斯INGARCH模型和泊松广义双曲正割INGARCH模型。本文采用局部影响分析方法对混合泊松INGARCH模型框架内的时间序列数据进行计数。参数估计采用期望最大化算法。在局部影响分析的背景下,考虑了两种全局影响方法(广义Cook距离和q距离)和四种摄动-情况加权摄动、数据摄动、加性摄动和尺度摄动-来确定影响点。最后,通过对实际数据集的仿真和分析,验证了所提方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic analytics for the mixed Poisson INGARCH model with applications.

In statistical diagnosis and sensitivity analysis, the local influence method plays a crucial role and is sometimes more advantageous than other methods. The mixed Poisson integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) model is built on a flexible family of mixed Poisson distributions. It not only encompasses the negative binomial INGARCH model but also allows for the introduction of the Poisson-inverse Gaussian INGARCH model and the Poisson generalized hyperbolic secant INGARCH model. This paper applies the local influence analysis method to count time series data within the framework of the mixed Poisson INGARCH model. For parameter estimation, the Expectation-Maximization algorithm is utilized. In the context of local influence analysis, two global influence methods (generalized Cook distance and Q-distance) and four perturbations-case weights perturbation, data perturbation, additive perturbation, and scale perturbation-are considered to identify influential points. Finally, the feasibility and effectiveness of the proposed methods are demonstrated through simulations and analysis of a real data set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信