{"title":"目的基于自适应分段多项式回归的贝叶斯趋势滤波。","authors":"Sang Gil Kang, Yongku Kim","doi":"10.1080/02664763.2025.2461186","DOIUrl":null,"url":null,"abstract":"<p><p>Several methods have been developed for nonparametric regression problems, including classical approaches such as kernels, local polynomials, smoothing splines, sieves, and wavelets, as well as relatively new methods such as lasso, generalized lasso, and trend filtering. This study proposes an objective Bayesian trend filtering method based on model selection. The procedure followed in this study estimates the functions based on adaptive piecewise polynomial regression models with two components. First, we determine the intervals with varying trends using Bayesian binary segmentation and then evaluate the most reasonable trend via Bayesian model selection at these intervals. This trend filtering procedure follows Bayesian model selection that uses intrinsic priors, which eliminated any subjective input. Additionally, we prove that the proposed method using these intrinsic priors was consistent when applied to large sample sizes. The behavior of the proposed Bayesian trend filtering procedure is compared with the trend filtering using a simulation study and real examples. Finally, we apply the proposed method to detect the variance change points under mean changes, whereas the existing methods yielded inaccurate estimates of the variance change points when the mean varied smoothly, as the sudden-change assumption was violated in such cases.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 13","pages":"2357-2383"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Objective Bayesian trend filtering via adaptive piecewise polynomial regression.\",\"authors\":\"Sang Gil Kang, Yongku Kim\",\"doi\":\"10.1080/02664763.2025.2461186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several methods have been developed for nonparametric regression problems, including classical approaches such as kernels, local polynomials, smoothing splines, sieves, and wavelets, as well as relatively new methods such as lasso, generalized lasso, and trend filtering. This study proposes an objective Bayesian trend filtering method based on model selection. The procedure followed in this study estimates the functions based on adaptive piecewise polynomial regression models with two components. First, we determine the intervals with varying trends using Bayesian binary segmentation and then evaluate the most reasonable trend via Bayesian model selection at these intervals. This trend filtering procedure follows Bayesian model selection that uses intrinsic priors, which eliminated any subjective input. Additionally, we prove that the proposed method using these intrinsic priors was consistent when applied to large sample sizes. The behavior of the proposed Bayesian trend filtering procedure is compared with the trend filtering using a simulation study and real examples. Finally, we apply the proposed method to detect the variance change points under mean changes, whereas the existing methods yielded inaccurate estimates of the variance change points when the mean varied smoothly, as the sudden-change assumption was violated in such cases.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 13\",\"pages\":\"2357-2383\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2461186\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2461186","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Objective Bayesian trend filtering via adaptive piecewise polynomial regression.
Several methods have been developed for nonparametric regression problems, including classical approaches such as kernels, local polynomials, smoothing splines, sieves, and wavelets, as well as relatively new methods such as lasso, generalized lasso, and trend filtering. This study proposes an objective Bayesian trend filtering method based on model selection. The procedure followed in this study estimates the functions based on adaptive piecewise polynomial regression models with two components. First, we determine the intervals with varying trends using Bayesian binary segmentation and then evaluate the most reasonable trend via Bayesian model selection at these intervals. This trend filtering procedure follows Bayesian model selection that uses intrinsic priors, which eliminated any subjective input. Additionally, we prove that the proposed method using these intrinsic priors was consistent when applied to large sample sizes. The behavior of the proposed Bayesian trend filtering procedure is compared with the trend filtering using a simulation study and real examples. Finally, we apply the proposed method to detect the variance change points under mean changes, whereas the existing methods yielded inaccurate estimates of the variance change points when the mean varied smoothly, as the sudden-change assumption was violated in such cases.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.