具有竞争风险的区间截尾数据的分位数回归模型。

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2025-03-15 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2025.2474627
Amirah Afiqah Binti Che Ramli, Yang-Jin Kim
{"title":"具有竞争风险的区间截尾数据的分位数回归模型。","authors":"Amirah Afiqah Binti Che Ramli, Yang-Jin Kim","doi":"10.1080/02664763.2025.2474627","DOIUrl":null,"url":null,"abstract":"<p><p>Our interest is to provide the methodology for estimating quantile regression model for interval-censored competing risk data. Lee and Kim [<i>Analysis of interval censored competing risk data via nonparametric multiple imputation</i>. Stat. Biopharm. Res. 13 (2020), pp. 367-374.] applied a censoring complete data concept suggested by Ruan and Gray [<i>Analyses of cumulative incidence function via non-parametric multiple imputation</i>. Sta. Med. 27 (2008), pp. 5709-5724.] to recover a missing information related with competing events. In this paper, we also applied it to a quantile regression model. The simulated censoring times of the competing events are generated with a multiple imputation technique and the survival function of right censoring times. The performance of suggested methods is evaluated by comparing with the result of a simple imputation method under several distributions and sample sizes. The AIDS dataset is analyzed to estimate the effect of several covariates on the quantiles of cause-specific CIF as a real data analysis.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 13","pages":"2438-2447"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490390/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantile regression model for interval-censored data with competing risks.\",\"authors\":\"Amirah Afiqah Binti Che Ramli, Yang-Jin Kim\",\"doi\":\"10.1080/02664763.2025.2474627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our interest is to provide the methodology for estimating quantile regression model for interval-censored competing risk data. Lee and Kim [<i>Analysis of interval censored competing risk data via nonparametric multiple imputation</i>. Stat. Biopharm. Res. 13 (2020), pp. 367-374.] applied a censoring complete data concept suggested by Ruan and Gray [<i>Analyses of cumulative incidence function via non-parametric multiple imputation</i>. Sta. Med. 27 (2008), pp. 5709-5724.] to recover a missing information related with competing events. In this paper, we also applied it to a quantile regression model. The simulated censoring times of the competing events are generated with a multiple imputation technique and the survival function of right censoring times. The performance of suggested methods is evaluated by comparing with the result of a simple imputation method under several distributions and sample sizes. The AIDS dataset is analyzed to estimate the effect of several covariates on the quantiles of cause-specific CIF as a real data analysis.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 13\",\"pages\":\"2438-2447\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2474627\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2474627","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们的兴趣是提供估计区间审查竞争风险数据的分位数回归模型的方法。区间删减竞争风险数据的非参数多重插值分析[j]。统计,Biopharm。Res. 13(2020),第367-374页。]采用了Ruan和Gray[通过非参数多重imputation对累积关联函数的分析]提出的审查完备数据概念。Sta。医学。27 (2008),pp. 5709-5724。来恢复与比赛有关的丢失信息。在本文中,我们还将其应用于分位数回归模型。采用多重插值技术和正确的滤波时间生存函数,生成了模拟的赛事滤波时间。在不同的分布和样本量下,通过与简单的插值方法的结果进行比较,评价了所提方法的性能。对艾滋病数据集进行分析,以估计几个协变量对病因特异性CIF分位数的影响,作为实际数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantile regression model for interval-censored data with competing risks.

Our interest is to provide the methodology for estimating quantile regression model for interval-censored competing risk data. Lee and Kim [Analysis of interval censored competing risk data via nonparametric multiple imputation. Stat. Biopharm. Res. 13 (2020), pp. 367-374.] applied a censoring complete data concept suggested by Ruan and Gray [Analyses of cumulative incidence function via non-parametric multiple imputation. Sta. Med. 27 (2008), pp. 5709-5724.] to recover a missing information related with competing events. In this paper, we also applied it to a quantile regression model. The simulated censoring times of the competing events are generated with a multiple imputation technique and the survival function of right censoring times. The performance of suggested methods is evaluated by comparing with the result of a simple imputation method under several distributions and sample sizes. The AIDS dataset is analyzed to estimate the effect of several covariates on the quantiles of cause-specific CIF as a real data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信