在保留可解释性的同时,改进生存树的节点内估计。

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2025.2473535
Haolin Li, Yiyang Fan, Jianwen Cai
{"title":"在保留可解释性的同时,改进生存树的节点内估计。","authors":"Haolin Li, Yiyang Fan, Jianwen Cai","doi":"10.1080/02664763.2025.2473535","DOIUrl":null,"url":null,"abstract":"<p><p>In statistical learning for survival data, survival trees are favored for their capacity to detect complex relationships beyond parametric and semiparametric models. Despite this, their prediction accuracy is often suboptimal. In this paper, we propose a new method based on super learning to improve the within-node estimation and overall survival prediction accuracy, while preserving the interpretability of the survival tree. Simulation studies reveal the proposed method's superior finite sample performance compared to conventional approaches for within-node estimation in survival trees. Furthermore, we apply this method to analyze the North Central Cancer Treatment Group Lung Cancer Data, cardiovascular medical records from the Faisalabad Institute of Cardiology, and the integrated genomic data of ovarian carcinoma with The Cancer Genome Atlas project.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 13","pages":"2544-2558"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490394/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving the within-node estimation of survival trees while retaining interpretability.\",\"authors\":\"Haolin Li, Yiyang Fan, Jianwen Cai\",\"doi\":\"10.1080/02664763.2025.2473535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In statistical learning for survival data, survival trees are favored for their capacity to detect complex relationships beyond parametric and semiparametric models. Despite this, their prediction accuracy is often suboptimal. In this paper, we propose a new method based on super learning to improve the within-node estimation and overall survival prediction accuracy, while preserving the interpretability of the survival tree. Simulation studies reveal the proposed method's superior finite sample performance compared to conventional approaches for within-node estimation in survival trees. Furthermore, we apply this method to analyze the North Central Cancer Treatment Group Lung Cancer Data, cardiovascular medical records from the Faisalabad Institute of Cardiology, and the integrated genomic data of ovarian carcinoma with The Cancer Genome Atlas project.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 13\",\"pages\":\"2544-2558\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490394/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2473535\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2473535","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在生存数据的统计学习中,生存树因其检测参数和半参数模型之外的复杂关系的能力而受到青睐。尽管如此,它们的预测精度往往不是最优的。在保留生存树可解释性的前提下,提出了一种基于超学习的节点内估计和整体生存预测精度提高的新方法。仿真研究表明,与传统的生存树节点内估计方法相比,该方法具有优越的有限样本性能。此外,我们应用该方法分析了中北部癌症治疗组的肺癌数据、费萨拉巴德心脏病研究所的心血管医疗记录以及卵巢癌基因组图谱项目的整合基因组数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the within-node estimation of survival trees while retaining interpretability.

In statistical learning for survival data, survival trees are favored for their capacity to detect complex relationships beyond parametric and semiparametric models. Despite this, their prediction accuracy is often suboptimal. In this paper, we propose a new method based on super learning to improve the within-node estimation and overall survival prediction accuracy, while preserving the interpretability of the survival tree. Simulation studies reveal the proposed method's superior finite sample performance compared to conventional approaches for within-node estimation in survival trees. Furthermore, we apply this method to analyze the North Central Cancer Treatment Group Lung Cancer Data, cardiovascular medical records from the Faisalabad Institute of Cardiology, and the integrated genomic data of ovarian carcinoma with The Cancer Genome Atlas project.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信