红外显微成像中定量化学分析的校准。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Eirik Almklov Magnussen*, , , Boris Zimmermann, , , Simona Dzurendova, , , Ondrej Slany, , , Valeria Tafintseva, , , Kristian Hovde Liland, , , Kristin To̷ndel, , , Volha Shapaval, , and , Achim Kohler, 
{"title":"红外显微成像中定量化学分析的校准。","authors":"Eirik Almklov Magnussen*,&nbsp;, ,&nbsp;Boris Zimmermann,&nbsp;, ,&nbsp;Simona Dzurendova,&nbsp;, ,&nbsp;Ondrej Slany,&nbsp;, ,&nbsp;Valeria Tafintseva,&nbsp;, ,&nbsp;Kristian Hovde Liland,&nbsp;, ,&nbsp;Kristin To̷ndel,&nbsp;, ,&nbsp;Volha Shapaval,&nbsp;, and ,&nbsp;Achim Kohler,&nbsp;","doi":"10.1021/acs.analchem.5c03049","DOIUrl":null,"url":null,"abstract":"<p >Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 40","pages":"21947–21955"},"PeriodicalIF":6.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5c03049","citationCount":"0","resultStr":"{\"title\":\"Calibration for Quantitative Chemical Analysis in IR Microscopic Imaging\",\"authors\":\"Eirik Almklov Magnussen*,&nbsp;, ,&nbsp;Boris Zimmermann,&nbsp;, ,&nbsp;Simona Dzurendova,&nbsp;, ,&nbsp;Ondrej Slany,&nbsp;, ,&nbsp;Valeria Tafintseva,&nbsp;, ,&nbsp;Kristian Hovde Liland,&nbsp;, ,&nbsp;Kristin To̷ndel,&nbsp;, ,&nbsp;Volha Shapaval,&nbsp;, and ,&nbsp;Achim Kohler,&nbsp;\",\"doi\":\"10.1021/acs.analchem.5c03049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 40\",\"pages\":\"21947–21955\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5c03049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c03049\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c03049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

宏观样品的红外光谱可以根据参考分析进行校准,例如气相色谱法获得的脂质谱,并作为一种快速,低成本,定量的分析方法。根据参考数据校准红外微光谱图像通常是不可行的,因此从红外光谱数据进行空间分辨定量分析到目前为止还不可能。在这项工作中,我们提出了一种基于深度学习的校准传递方法,使宏观红外光谱数据建立的回归模型适用于高光谱红外图像的微观像元光谱。校准转移是通过将微观红外光谱转移到宏观光谱域来完成的,这使得可以使用获得的模型进行批量测量。这使我们能够在基于红外显微光谱测量的成像领域进行定量化学分析。我们在产油丝状真菌的微光谱数据上验证了所建议的微校准方法,该方法根据气相色谱法和葡萄糖胺含量测量获得的脂质谱进行了定量红外微光谱校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration for Quantitative Chemical Analysis in IR Microscopic Imaging

Infrared spectroscopy of macroscopic samples can be calibrated against reference analysis, such as lipid profiles acquired by gas chromatography, and serve as a fast, low-cost, quantitative analytical method. Calibration of infrared microspectroscopic images against reference data is in general not feasible, and thus spatially resolved quantitative analysis from infrared spectral data has not been possible so far. In this work, we present a deep learning-based calibration transfer method to adapt regression models established for macroscopic infrared spectroscopic data to apply to microscopic pixel spectra of hyperspectral IR images. The calibration transfer is accomplished by transferring microspectroscopic infrared spectra to the domain of macroscopic spectra, which enables the use of models obtained for bulk measurements. This allows us to perform quantitative chemical analysis in the imaging domain based on infrared microspectroscopic measurements. We validate the suggested microcalibration approach on microspectroscopic data of oleaginous filamentous fungi, which is calibrated toward lipid profiles obtained by gas chromatography and measurements of glucosamine content to perform quantitative infrared microspectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信