T.S. Copetti , A. Chordia , M. Fieback , M. Taouil , S. Hamdioui , L.M. Bolzani Poehls
{"title":"探索在reram中使用极端温度来促进故障传播","authors":"T.S. Copetti , A. Chordia , M. Fieback , M. Taouil , S. Hamdioui , L.M. Bolzani Poehls","doi":"10.1016/j.microrel.2025.115919","DOIUrl":null,"url":null,"abstract":"<div><div>Resistive Random-Access Memories (ReRAMs) represent a promising candidate to complement and/or replace CMOS-based memories adopted in several emerging applications. Despite all their advantages – mainly CMOS process compatibility, zero standby power, and high scalability and density – the use of ReRAMs in real applications depends on guaranteeing their quality after manufacturing. As observed in CMOS-based memories, ReRAMs are also susceptible to manufacturing deviations, including defects and process variations, that can cause faulty behaviors different from those observed in CMOS technology, increasing not only the manufacturing test complexity but also the time required to perform the test. In this context, this paper proposes to study the use of temperature to facilitate fault propagation in ReRAMs, reducing the required test time. A case study composed of a 3x3 word-based ReRAM with peripheral circuitry implemented based on a 130 nm Predictive Technology Model (PTM) library was adopted. During the proposed study, a total of 17 defects were injected in different positions of the ReRAM cell, and their respective faulty behavior was classified into conventional and unique faults, considering three different temperatures (25, 100, and -40 °C). The obtained results show that the temperature can, depending on the position of the defect, facilitate fault propagation, which reduces the time required for performing manufacturing testing.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"175 ","pages":"Article 115919"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the use of extreme temperatures to facilitate fault propagation in ReRAMs\",\"authors\":\"T.S. Copetti , A. Chordia , M. Fieback , M. Taouil , S. Hamdioui , L.M. Bolzani Poehls\",\"doi\":\"10.1016/j.microrel.2025.115919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resistive Random-Access Memories (ReRAMs) represent a promising candidate to complement and/or replace CMOS-based memories adopted in several emerging applications. Despite all their advantages – mainly CMOS process compatibility, zero standby power, and high scalability and density – the use of ReRAMs in real applications depends on guaranteeing their quality after manufacturing. As observed in CMOS-based memories, ReRAMs are also susceptible to manufacturing deviations, including defects and process variations, that can cause faulty behaviors different from those observed in CMOS technology, increasing not only the manufacturing test complexity but also the time required to perform the test. In this context, this paper proposes to study the use of temperature to facilitate fault propagation in ReRAMs, reducing the required test time. A case study composed of a 3x3 word-based ReRAM with peripheral circuitry implemented based on a 130 nm Predictive Technology Model (PTM) library was adopted. During the proposed study, a total of 17 defects were injected in different positions of the ReRAM cell, and their respective faulty behavior was classified into conventional and unique faults, considering three different temperatures (25, 100, and -40 °C). The obtained results show that the temperature can, depending on the position of the defect, facilitate fault propagation, which reduces the time required for performing manufacturing testing.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"175 \",\"pages\":\"Article 115919\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271425003324\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425003324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Exploring the use of extreme temperatures to facilitate fault propagation in ReRAMs
Resistive Random-Access Memories (ReRAMs) represent a promising candidate to complement and/or replace CMOS-based memories adopted in several emerging applications. Despite all their advantages – mainly CMOS process compatibility, zero standby power, and high scalability and density – the use of ReRAMs in real applications depends on guaranteeing their quality after manufacturing. As observed in CMOS-based memories, ReRAMs are also susceptible to manufacturing deviations, including defects and process variations, that can cause faulty behaviors different from those observed in CMOS technology, increasing not only the manufacturing test complexity but also the time required to perform the test. In this context, this paper proposes to study the use of temperature to facilitate fault propagation in ReRAMs, reducing the required test time. A case study composed of a 3x3 word-based ReRAM with peripheral circuitry implemented based on a 130 nm Predictive Technology Model (PTM) library was adopted. During the proposed study, a total of 17 defects were injected in different positions of the ReRAM cell, and their respective faulty behavior was classified into conventional and unique faults, considering three different temperatures (25, 100, and -40 °C). The obtained results show that the temperature can, depending on the position of the defect, facilitate fault propagation, which reduces the time required for performing manufacturing testing.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.