{"title":"一种用于可穿戴系统的无电池BLE反向散射通信芯片","authors":"Yongling Zhang;Ji Xiong;Junzai Chen;Xiaoyu Li;Jinrui Zuo;Yan Wang;Xiaoyi Wang;Miao Meng","doi":"10.1109/LSSC.2025.3612423","DOIUrl":null,"url":null,"abstract":"This letter presents a backscatter chip that features bidirectional communication with commodity bluetooth low-energy (BLE) transceivers. For uplink, the chip reflects a reverse-whitened BLE tone into single-sideband (SSB) GFSK-modulated BLE packets via a proposed replica VCO-based GFSK modulator and an inductor-free SSB reflector. For downlink, the BLE packets are frequency down-converted passively by utilizing a reverse-whitened BLE tone followed by a proposed self-calibrated GFSK demodulator to recover the downlink data at ultralow power with improved robustness. A dual-linearly polarized microstrip patch antenna (DPMPA) is integrated to enable concurrent RF energy harvesting and communication in a wearable form factor. Implemented in 65-nm CMOS, the chip consumes <inline-formula> <tex-math>$1.4~\\mu $ </tex-math></inline-formula>W for downlink and <inline-formula> <tex-math>$15.8~\\mu $ </tex-math></inline-formula>W for uplink. Wireless tests demonstrated a 50 cm downlink and >3 m uplink ranges at 20 dBm EIRP.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"297-300"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Battery-Free BLE Backscatter Communication Chip for Wearable Systems\",\"authors\":\"Yongling Zhang;Ji Xiong;Junzai Chen;Xiaoyu Li;Jinrui Zuo;Yan Wang;Xiaoyi Wang;Miao Meng\",\"doi\":\"10.1109/LSSC.2025.3612423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a backscatter chip that features bidirectional communication with commodity bluetooth low-energy (BLE) transceivers. For uplink, the chip reflects a reverse-whitened BLE tone into single-sideband (SSB) GFSK-modulated BLE packets via a proposed replica VCO-based GFSK modulator and an inductor-free SSB reflector. For downlink, the BLE packets are frequency down-converted passively by utilizing a reverse-whitened BLE tone followed by a proposed self-calibrated GFSK demodulator to recover the downlink data at ultralow power with improved robustness. A dual-linearly polarized microstrip patch antenna (DPMPA) is integrated to enable concurrent RF energy harvesting and communication in a wearable form factor. Implemented in 65-nm CMOS, the chip consumes <inline-formula> <tex-math>$1.4~\\\\mu $ </tex-math></inline-formula>W for downlink and <inline-formula> <tex-math>$15.8~\\\\mu $ </tex-math></inline-formula>W for uplink. Wireless tests demonstrated a 50 cm downlink and >3 m uplink ranges at 20 dBm EIRP.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"297-300\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11174967/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11174967/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Battery-Free BLE Backscatter Communication Chip for Wearable Systems
This letter presents a backscatter chip that features bidirectional communication with commodity bluetooth low-energy (BLE) transceivers. For uplink, the chip reflects a reverse-whitened BLE tone into single-sideband (SSB) GFSK-modulated BLE packets via a proposed replica VCO-based GFSK modulator and an inductor-free SSB reflector. For downlink, the BLE packets are frequency down-converted passively by utilizing a reverse-whitened BLE tone followed by a proposed self-calibrated GFSK demodulator to recover the downlink data at ultralow power with improved robustness. A dual-linearly polarized microstrip patch antenna (DPMPA) is integrated to enable concurrent RF energy harvesting and communication in a wearable form factor. Implemented in 65-nm CMOS, the chip consumes $1.4~\mu $ W for downlink and $15.8~\mu $ W for uplink. Wireless tests demonstrated a 50 cm downlink and >3 m uplink ranges at 20 dBm EIRP.