EDFA增益饱和下有源光纤环衰荡光谱浓度反演的CNN-LSTM混合模型

IF 5.6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yawen Li , Pengpeng Wang , Yujie Duan , Zhanshang Su , Tianxiang Zhao , Xiangxian Li , Cunguang Zhu
{"title":"EDFA增益饱和下有源光纤环衰荡光谱浓度反演的CNN-LSTM混合模型","authors":"Yawen Li ,&nbsp;Pengpeng Wang ,&nbsp;Yujie Duan ,&nbsp;Zhanshang Su ,&nbsp;Tianxiang Zhao ,&nbsp;Xiangxian Li ,&nbsp;Cunguang Zhu","doi":"10.1016/j.measurement.2025.119193","DOIUrl":null,"url":null,"abstract":"<div><div>In active fiber loop ring-down spectroscopy (FLRDS) systems, gain saturation in the erbium-doped fiber amplifier (EDFA) causes inter-pulse gain fluctuations, resulting in significant deviations from ideal exponential decay. These deviations compromise measurement accuracy because traditional methods depend on precise extraction of the ring-down time (<em>τ</em>). To address this issue, we propose a hybrid deep learning framework that combines a convolutional neural network (CNN) with a long short-term memory (LSTM) network for FLRDS-based gas sensing. This architecture captures both local temporal features and long-range dependencies, enabling nonlinear compensation that maps distorted ring-down signals directly to gas concentrations—bypassing the error-prone step of τ estimation. Experimental results show that the CNN-LSTM model substantially improves concentration retrieval accuracy, outperforming not only standalone CNN and LSTM models, but also other common machine and deep learning methods in key metrics such as RMSE, MAE, MAPE, and R<sup>2</sup>. Over a concentration range of 40–1600 ppm, the model effectively mitigates EDFA gain saturation effects, achieving relative errors below 2.5 % and offering improved robustness for practical gas sensing. An uncertainty budget analysis further confirms that the proposed method yields lower combined standard uncertainty and narrower confidence intervals than exponential fitting, underscoring its reliability for high-precision gas detection.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"258 ","pages":"Article 119193"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid CNN-LSTM model for concentration retrieval in active fiber loop ring-down spectroscopy under EDFA gain saturation\",\"authors\":\"Yawen Li ,&nbsp;Pengpeng Wang ,&nbsp;Yujie Duan ,&nbsp;Zhanshang Su ,&nbsp;Tianxiang Zhao ,&nbsp;Xiangxian Li ,&nbsp;Cunguang Zhu\",\"doi\":\"10.1016/j.measurement.2025.119193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In active fiber loop ring-down spectroscopy (FLRDS) systems, gain saturation in the erbium-doped fiber amplifier (EDFA) causes inter-pulse gain fluctuations, resulting in significant deviations from ideal exponential decay. These deviations compromise measurement accuracy because traditional methods depend on precise extraction of the ring-down time (<em>τ</em>). To address this issue, we propose a hybrid deep learning framework that combines a convolutional neural network (CNN) with a long short-term memory (LSTM) network for FLRDS-based gas sensing. This architecture captures both local temporal features and long-range dependencies, enabling nonlinear compensation that maps distorted ring-down signals directly to gas concentrations—bypassing the error-prone step of τ estimation. Experimental results show that the CNN-LSTM model substantially improves concentration retrieval accuracy, outperforming not only standalone CNN and LSTM models, but also other common machine and deep learning methods in key metrics such as RMSE, MAE, MAPE, and R<sup>2</sup>. Over a concentration range of 40–1600 ppm, the model effectively mitigates EDFA gain saturation effects, achieving relative errors below 2.5 % and offering improved robustness for practical gas sensing. An uncertainty budget analysis further confirms that the proposed method yields lower combined standard uncertainty and narrower confidence intervals than exponential fitting, underscoring its reliability for high-precision gas detection.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"258 \",\"pages\":\"Article 119193\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125025527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125025527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在有源光纤环路衰荡光谱(FLRDS)系统中,掺铒光纤放大器(EDFA)中的增益饱和会引起脉冲间增益波动,导致与理想指数衰减的显著偏差。这些偏差损害了测量精度,因为传统方法依赖于精确提取衰荡时间(τ)。为了解决这个问题,我们提出了一种混合深度学习框架,该框架将卷积神经网络(CNN)与长短期记忆(LSTM)网络相结合,用于基于flrds的气体传感。该结构捕获了局部时间特征和远程依赖关系,实现了非线性补偿,将扭曲的衰荡信号直接映射到气体浓度,绕过了容易出错的τ估计步骤。实验结果表明,CNN-LSTM模型大大提高了集中检索的准确性,不仅优于独立的CNN和LSTM模型,而且在RMSE、MAE、MAPE和R2等关键指标上也优于其他常见的机器和深度学习方法。在40-1600 ppm的浓度范围内,该模型有效地减轻了EDFA增益饱和效应,实现了低于2.5%的相对误差,并为实际气体传感提供了更好的鲁棒性。不确定度预算分析进一步证实,与指数拟合相比,该方法的综合标准不确定度更低,置信区间更窄,强调了其高精度气体检测的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid CNN-LSTM model for concentration retrieval in active fiber loop ring-down spectroscopy under EDFA gain saturation
In active fiber loop ring-down spectroscopy (FLRDS) systems, gain saturation in the erbium-doped fiber amplifier (EDFA) causes inter-pulse gain fluctuations, resulting in significant deviations from ideal exponential decay. These deviations compromise measurement accuracy because traditional methods depend on precise extraction of the ring-down time (τ). To address this issue, we propose a hybrid deep learning framework that combines a convolutional neural network (CNN) with a long short-term memory (LSTM) network for FLRDS-based gas sensing. This architecture captures both local temporal features and long-range dependencies, enabling nonlinear compensation that maps distorted ring-down signals directly to gas concentrations—bypassing the error-prone step of τ estimation. Experimental results show that the CNN-LSTM model substantially improves concentration retrieval accuracy, outperforming not only standalone CNN and LSTM models, but also other common machine and deep learning methods in key metrics such as RMSE, MAE, MAPE, and R2. Over a concentration range of 40–1600 ppm, the model effectively mitigates EDFA gain saturation effects, achieving relative errors below 2.5 % and offering improved robustness for practical gas sensing. An uncertainty budget analysis further confirms that the proposed method yields lower combined standard uncertainty and narrower confidence intervals than exponential fitting, underscoring its reliability for high-precision gas detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信