用于工业过程软测量的过程动态导向潜在可预测性嵌入监督深度网络

IF 5.6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhengxuan Zhang , Xu Yang , Jian Huang , Yuri A.W. Shardt , Jingjing Gao , Kaixiang Peng
{"title":"用于工业过程软测量的过程动态导向潜在可预测性嵌入监督深度网络","authors":"Zhengxuan Zhang ,&nbsp;Xu Yang ,&nbsp;Jian Huang ,&nbsp;Yuri A.W. Shardt ,&nbsp;Jingjing Gao ,&nbsp;Kaixiang Peng","doi":"10.1016/j.measurement.2025.119139","DOIUrl":null,"url":null,"abstract":"<div><div>Soft sensors for complex industrial processes have become a challenging task due to dynamic self-correlation caused by the feedback loop and inertia effects. Although the dynamic latent variable models offer an interpretable solution, the linear latent variables fail to capture the behavioral characteristics of strongly nonlinear industrial processes. Thus, this article proposes a new deep stacked autoencoder with latent predictability embedding for soft sensing, which is called the process-dynamics-guided latent predictability embedding supervised deep network (PDLPSDN). To capture the autocorrelation in the process data, a regularization term based on the point prediction is embedded into the decoding loss. Subsequently, information theory is used to link the contribution from past time steps to the present, which is used to guide the structure of the latent dynamics. Finally, the parameter-guided regularization terms assist in learning the temporal dependencies in the process data and are then trained in an alternating manner. The proposed PDLPSDN decreases the root mean squared error by 16.8% for the debutanizer column and 25.7% for the sulfur-recovery unit, demonstrating the reliable and superior performance of the proposed PDLPSDN-based soft sensing.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"258 ","pages":"Article 119139"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process-dynamics-guided latent predictability embedding supervised deep networks for soft sensing in industrial processes\",\"authors\":\"Zhengxuan Zhang ,&nbsp;Xu Yang ,&nbsp;Jian Huang ,&nbsp;Yuri A.W. Shardt ,&nbsp;Jingjing Gao ,&nbsp;Kaixiang Peng\",\"doi\":\"10.1016/j.measurement.2025.119139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soft sensors for complex industrial processes have become a challenging task due to dynamic self-correlation caused by the feedback loop and inertia effects. Although the dynamic latent variable models offer an interpretable solution, the linear latent variables fail to capture the behavioral characteristics of strongly nonlinear industrial processes. Thus, this article proposes a new deep stacked autoencoder with latent predictability embedding for soft sensing, which is called the process-dynamics-guided latent predictability embedding supervised deep network (PDLPSDN). To capture the autocorrelation in the process data, a regularization term based on the point prediction is embedded into the decoding loss. Subsequently, information theory is used to link the contribution from past time steps to the present, which is used to guide the structure of the latent dynamics. Finally, the parameter-guided regularization terms assist in learning the temporal dependencies in the process data and are then trained in an alternating manner. The proposed PDLPSDN decreases the root mean squared error by 16.8% for the debutanizer column and 25.7% for the sulfur-recovery unit, demonstrating the reliable and superior performance of the proposed PDLPSDN-based soft sensing.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"258 \",\"pages\":\"Article 119139\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125024984\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125024984","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于反馈回路和惯性效应引起的动态自相关,复杂工业过程的软传感器已成为一项具有挑战性的任务。虽然动态潜变量模型提供了一个可解释的解决方案,但线性潜变量未能捕捉到强非线性工业过程的行为特征。为此,本文提出了一种新的具有潜在可预测性嵌入的用于软检测的深度堆叠自编码器,称为过程动态引导的潜在可预测性嵌入监督深度网络(PDLPSDN)。为了捕获过程数据中的自相关性,在解码损失中嵌入基于点预测的正则化项。随后,信息论被用来将过去的时间步骤与现在的贡献联系起来,这被用来指导潜在动力学的结构。最后,参数引导的正则化项有助于学习过程数据中的时间依赖性,然后以交替的方式进行训练。所提出的PDLPSDN软测量方法可将脱硝塔的均方根误差降低16.8%,将硫磺回收装置的均方根误差降低25.7%,证明了PDLPSDN软测量方法的可靠性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Process-dynamics-guided latent predictability embedding supervised deep networks for soft sensing in industrial processes
Soft sensors for complex industrial processes have become a challenging task due to dynamic self-correlation caused by the feedback loop and inertia effects. Although the dynamic latent variable models offer an interpretable solution, the linear latent variables fail to capture the behavioral characteristics of strongly nonlinear industrial processes. Thus, this article proposes a new deep stacked autoencoder with latent predictability embedding for soft sensing, which is called the process-dynamics-guided latent predictability embedding supervised deep network (PDLPSDN). To capture the autocorrelation in the process data, a regularization term based on the point prediction is embedded into the decoding loss. Subsequently, information theory is used to link the contribution from past time steps to the present, which is used to guide the structure of the latent dynamics. Finally, the parameter-guided regularization terms assist in learning the temporal dependencies in the process data and are then trained in an alternating manner. The proposed PDLPSDN decreases the root mean squared error by 16.8% for the debutanizer column and 25.7% for the sulfur-recovery unit, demonstrating the reliable and superior performance of the proposed PDLPSDN-based soft sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信