Jui-Sheng Wu , Chen-Hsi Tsai , You-Chen Weng , Edward Yi Chang
{"title":"利用LPCVD SiN钝化技术增强超薄势垒AlGaN/GaN hemt的高功率应用","authors":"Jui-Sheng Wu , Chen-Hsi Tsai , You-Chen Weng , Edward Yi Chang","doi":"10.1016/j.sse.2025.109260","DOIUrl":null,"url":null,"abstract":"<div><div>Ultra-thin-barrier AlGaN/GaN HEMTs offer a gate-recess-free solution but suffer from high on-resistance and current degradation. In this work, ultra-thin-barrier AlGaN/GaN heterostructures with a 1-nm GaN cap and 5-nm Al<sub>0.22</sub>Ga<sub>0.78</sub>N barrier were fabricated, followed by LPCVD SiN passivation of four different thicknesses (50, 60, 150, and 220 nm) to solve the low carrier density issues associated with thin-barrier structures. The 220 nm LPCVD-SiN passivated device achieves a high <em>I</em><sub>D,max</sub> of 907 mA/mm and the lowest on-resistance of 8.9 Ω·mm. In addition, to evaluate the stability of current output, thinner LPCVD-SiN layers exhibit better current stability under ON-state stress up to 150 °C. These findings highlight the benefits of ultra-thin-barrier AlGaN/GaN HEMTs design for future high-power GaN applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109260"},"PeriodicalIF":1.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing ultra-thin-barrier AlGaN/GaN HEMTs with LPCVD SiN passivation for high-power applications\",\"authors\":\"Jui-Sheng Wu , Chen-Hsi Tsai , You-Chen Weng , Edward Yi Chang\",\"doi\":\"10.1016/j.sse.2025.109260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultra-thin-barrier AlGaN/GaN HEMTs offer a gate-recess-free solution but suffer from high on-resistance and current degradation. In this work, ultra-thin-barrier AlGaN/GaN heterostructures with a 1-nm GaN cap and 5-nm Al<sub>0.22</sub>Ga<sub>0.78</sub>N barrier were fabricated, followed by LPCVD SiN passivation of four different thicknesses (50, 60, 150, and 220 nm) to solve the low carrier density issues associated with thin-barrier structures. The 220 nm LPCVD-SiN passivated device achieves a high <em>I</em><sub>D,max</sub> of 907 mA/mm and the lowest on-resistance of 8.9 Ω·mm. In addition, to evaluate the stability of current output, thinner LPCVD-SiN layers exhibit better current stability under ON-state stress up to 150 °C. These findings highlight the benefits of ultra-thin-barrier AlGaN/GaN HEMTs design for future high-power GaN applications.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109260\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125002059\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125002059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing ultra-thin-barrier AlGaN/GaN HEMTs with LPCVD SiN passivation for high-power applications
Ultra-thin-barrier AlGaN/GaN HEMTs offer a gate-recess-free solution but suffer from high on-resistance and current degradation. In this work, ultra-thin-barrier AlGaN/GaN heterostructures with a 1-nm GaN cap and 5-nm Al0.22Ga0.78N barrier were fabricated, followed by LPCVD SiN passivation of four different thicknesses (50, 60, 150, and 220 nm) to solve the low carrier density issues associated with thin-barrier structures. The 220 nm LPCVD-SiN passivated device achieves a high ID,max of 907 mA/mm and the lowest on-resistance of 8.9 Ω·mm. In addition, to evaluate the stability of current output, thinner LPCVD-SiN layers exhibit better current stability under ON-state stress up to 150 °C. These findings highlight the benefits of ultra-thin-barrier AlGaN/GaN HEMTs design for future high-power GaN applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.