非均匀双模光纤中新的自相似雅可比有理波和多项式波:修正广义耦合nlse的精确解

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2025-09-30 DOI:10.1016/j.ijleo.2025.172551
Emmanuel Yomba
{"title":"非均匀双模光纤中新的自相似雅可比有理波和多项式波:修正广义耦合nlse的精确解","authors":"Emmanuel Yomba","doi":"10.1016/j.ijleo.2025.172551","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate self-similar periodic and solitary waves in inhomogeneous two-mode fibers governed by a generalized variable-coefficient coupled nonlinear Schrödinger system with ten independent coefficients that account for asymmetric dispersion, Kerr nonlinearities, linear gain/loss, and external potentials in each mode. A constructive similarity transformation maps the variable-coefficient equations to a constant-coefficient pair, yielding explicit relations for the similarity variables, amplitudes, and phases. On the reduced system, an F-expansion framework produces five solvable families of exact solutions classified as rational and polynomial Jacobi-type periodic waves, together with their existence constraints and dispersion relations. The Jacobi families continuously connect to localized states—bright, dark, kink/antikink, and W-shaped solitons—in the elliptic-modulus limit. Mapping back provides chirped self-similar solutions of the original inhomogeneous model. Using prototype dispersion and gain/loss profiles, we quantify pulse energy, width, and chirp to track periodic-to-soliton transitions under parameter modulation. The results substantially enlarge the known solution space for vector NLSEs beyond symmetric, few-coefficient settings and offer analytic control knobs—via the engineered coefficient landscapes—for amplitude, width, and phase, with relevance to pulse shaping and robust transmission in fiber systems.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"339 ","pages":"Article 172551"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New self-similar Jacobi rational and polynomial waves in inhomogeneous two-mode fibers: Exact solutions of generalized coupled NLSEs modified\",\"authors\":\"Emmanuel Yomba\",\"doi\":\"10.1016/j.ijleo.2025.172551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate self-similar periodic and solitary waves in inhomogeneous two-mode fibers governed by a generalized variable-coefficient coupled nonlinear Schrödinger system with ten independent coefficients that account for asymmetric dispersion, Kerr nonlinearities, linear gain/loss, and external potentials in each mode. A constructive similarity transformation maps the variable-coefficient equations to a constant-coefficient pair, yielding explicit relations for the similarity variables, amplitudes, and phases. On the reduced system, an F-expansion framework produces five solvable families of exact solutions classified as rational and polynomial Jacobi-type periodic waves, together with their existence constraints and dispersion relations. The Jacobi families continuously connect to localized states—bright, dark, kink/antikink, and W-shaped solitons—in the elliptic-modulus limit. Mapping back provides chirped self-similar solutions of the original inhomogeneous model. Using prototype dispersion and gain/loss profiles, we quantify pulse energy, width, and chirp to track periodic-to-soliton transitions under parameter modulation. The results substantially enlarge the known solution space for vector NLSEs beyond symmetric, few-coefficient settings and offer analytic control knobs—via the engineered coefficient landscapes—for amplitude, width, and phase, with relevance to pulse shaping and robust transmission in fiber systems.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"339 \",\"pages\":\"Article 172551\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402625003390\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625003390","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由广义变系数耦合非线性Schrödinger系统控制的非均匀双模光纤中的自相似周期波和孤立波,该系统具有十个独立系数,可以解释每个模式中的不对称色散、克尔非线性、线性增益/损耗和外部电位。构造相似变换将变系数方程映射到常系数对,产生相似变量、振幅和相位的显式关系。在约化系统上,一个f展开框架产生了5个可解的精确解族,这些精确解族分为有理和多项式雅可比型周期波,以及它们的存在约束和色散关系。Jacobi族在椭圆模极限下连续连接到局部状态——亮、暗、扭结/反扭结和w形孤子。反向映射提供了原始非齐次模型的啁啾自相似解。利用原型色散和增益/损耗曲线,我们量化了脉冲能量、宽度和啁啾,以跟踪参数调制下周期性到孤子的转变。结果大大扩大了矢量nlse的已知解空间,超越了对称、低系数设置,并通过工程系数景观提供了振幅、宽度和相位的分析控制旋涡,与光纤系统中的脉冲整形和鲁棒传输相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New self-similar Jacobi rational and polynomial waves in inhomogeneous two-mode fibers: Exact solutions of generalized coupled NLSEs modified
We investigate self-similar periodic and solitary waves in inhomogeneous two-mode fibers governed by a generalized variable-coefficient coupled nonlinear Schrödinger system with ten independent coefficients that account for asymmetric dispersion, Kerr nonlinearities, linear gain/loss, and external potentials in each mode. A constructive similarity transformation maps the variable-coefficient equations to a constant-coefficient pair, yielding explicit relations for the similarity variables, amplitudes, and phases. On the reduced system, an F-expansion framework produces five solvable families of exact solutions classified as rational and polynomial Jacobi-type periodic waves, together with their existence constraints and dispersion relations. The Jacobi families continuously connect to localized states—bright, dark, kink/antikink, and W-shaped solitons—in the elliptic-modulus limit. Mapping back provides chirped self-similar solutions of the original inhomogeneous model. Using prototype dispersion and gain/loss profiles, we quantify pulse energy, width, and chirp to track periodic-to-soliton transitions under parameter modulation. The results substantially enlarge the known solution space for vector NLSEs beyond symmetric, few-coefficient settings and offer analytic control knobs—via the engineered coefficient landscapes—for amplitude, width, and phase, with relevance to pulse shaping and robust transmission in fiber systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信