多模态光声荧光显微镜用于定量吸收系数映射和疾病模型中的精确病变跟踪

IF 5 2区 物理与天体物理 Q1 OPTICS
Linghui Gong , Zhaoyu Wang , Yidang Zhang , Zequan Xu , Hai Lin , Chao Cai , Yubin Liu
{"title":"多模态光声荧光显微镜用于定量吸收系数映射和疾病模型中的精确病变跟踪","authors":"Linghui Gong ,&nbsp;Zhaoyu Wang ,&nbsp;Yidang Zhang ,&nbsp;Zequan Xu ,&nbsp;Hai Lin ,&nbsp;Chao Cai ,&nbsp;Yubin Liu","doi":"10.1016/j.optlastec.2025.113940","DOIUrl":null,"url":null,"abstract":"<div><div>We present an integrated multimodal imaging system combining optical-resolution photoacoustic microscopy (OR-PAM) and fluorescence microscopy for quantitative mapping of optical absorption coefficients (<span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span>) in biological tissues. Our platform synergistically merges the molecular specificity of fluorescence imaging with OR-PAM’s depth-resolved quantitative capabilities, enabling precise lesion localization and physiological monitoring. Our system features a novel reconstruction algorithm that integrates Monte Carlo light transport simulations with custom OR-PAM, enabling absolute <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> determination − a capability unattainable with fluorescence microscopy and distinct from conventional OR-PAM approaches. The simulation experiment measured the optical absorption coefficient of blood vessels at 532 nm as 238 cm<sup>–1</sup>, showing a 3.4 % deviation from the theoretical value of 230.5 cm<sup>–1</sup> (data sourced from the MCML software package). Experimental validation across three model systems demonstrated its diagnostic potential: (1) inflammatory monitoring revealed a 7.9 % <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> increase at infection sites (258 vs. 239 cm<sup>–1</sup> in normal vasculature, p &lt; 0.001) within 12 h; (2) tumor tracking showed 5.5 % higher <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> in tumor vasculature (252 vs. 237 cm<sup>–1</sup>); and (3) cerebral vascular imaging achieved <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> quantification (235 cm<sup>–1</sup>) following blood–brain barrier opening. These results establish that fluorescence microscopy provides exceptional molecular tracking capability, while OR-PAM delivers quantitative <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> differences critical for distinguishing pathological tissues, offering a powerful tool for both fundamental research and clinical diagnostics.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"192 ","pages":"Article 113940"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal photoacoustic-fluorescence microscopy for quantitative absorption coefficient mapping and precision lesion tracking in disease models\",\"authors\":\"Linghui Gong ,&nbsp;Zhaoyu Wang ,&nbsp;Yidang Zhang ,&nbsp;Zequan Xu ,&nbsp;Hai Lin ,&nbsp;Chao Cai ,&nbsp;Yubin Liu\",\"doi\":\"10.1016/j.optlastec.2025.113940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present an integrated multimodal imaging system combining optical-resolution photoacoustic microscopy (OR-PAM) and fluorescence microscopy for quantitative mapping of optical absorption coefficients (<span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span>) in biological tissues. Our platform synergistically merges the molecular specificity of fluorescence imaging with OR-PAM’s depth-resolved quantitative capabilities, enabling precise lesion localization and physiological monitoring. Our system features a novel reconstruction algorithm that integrates Monte Carlo light transport simulations with custom OR-PAM, enabling absolute <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> determination − a capability unattainable with fluorescence microscopy and distinct from conventional OR-PAM approaches. The simulation experiment measured the optical absorption coefficient of blood vessels at 532 nm as 238 cm<sup>–1</sup>, showing a 3.4 % deviation from the theoretical value of 230.5 cm<sup>–1</sup> (data sourced from the MCML software package). Experimental validation across three model systems demonstrated its diagnostic potential: (1) inflammatory monitoring revealed a 7.9 % <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> increase at infection sites (258 vs. 239 cm<sup>–1</sup> in normal vasculature, p &lt; 0.001) within 12 h; (2) tumor tracking showed 5.5 % higher <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> in tumor vasculature (252 vs. 237 cm<sup>–1</sup>); and (3) cerebral vascular imaging achieved <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> quantification (235 cm<sup>–1</sup>) following blood–brain barrier opening. These results establish that fluorescence microscopy provides exceptional molecular tracking capability, while OR-PAM delivers quantitative <span><math><msub><mi>μ</mi><mi>a</mi></msub></math></span> differences critical for distinguishing pathological tissues, offering a powerful tool for both fundamental research and clinical diagnostics.</div></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":\"192 \",\"pages\":\"Article 113940\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399225015312\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399225015312","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种结合光学分辨率光声显微镜(OR-PAM)和荧光显微镜的集成多模态成像系统,用于定量绘制生物组织中的光学吸收系数(μa)。我们的平台将荧光成像的分子特异性与OR-PAM的深度分辨定量能力协同结合,实现精确的病变定位和生理监测。我们的系统具有新颖的重建算法,将蒙特卡罗光输运模拟与定制的OR-PAM相结合,实现绝对μa测定-荧光显微镜无法实现的能力,与传统的OR-PAM方法不同。模拟实验测得532 nm处血管的光吸收系数为238 cm-1,与理论值230.5 cm-1(数据来源于MCML软件包)有3.4%的偏差。三种模型系统的实验验证证明了其诊断潜力:(1)炎症监测显示感染部位在12小时内增加7.9% μa (258 μa vs.正常血管239 μa, p < 0.001);(2)肿瘤跟踪显示肿瘤血管μa升高5.5%(252比237 cm-1);(3)血脑屏障打开后脑血管成像达到μa定量(235 cm-1)。这些结果表明,荧光显微镜提供了卓越的分子跟踪能力,而OR-PAM提供了定量μa差异,对区分病理组织至关重要,为基础研究和临床诊断提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal photoacoustic-fluorescence microscopy for quantitative absorption coefficient mapping and precision lesion tracking in disease models
We present an integrated multimodal imaging system combining optical-resolution photoacoustic microscopy (OR-PAM) and fluorescence microscopy for quantitative mapping of optical absorption coefficients (μa) in biological tissues. Our platform synergistically merges the molecular specificity of fluorescence imaging with OR-PAM’s depth-resolved quantitative capabilities, enabling precise lesion localization and physiological monitoring. Our system features a novel reconstruction algorithm that integrates Monte Carlo light transport simulations with custom OR-PAM, enabling absolute μa determination − a capability unattainable with fluorescence microscopy and distinct from conventional OR-PAM approaches. The simulation experiment measured the optical absorption coefficient of blood vessels at 532 nm as 238 cm–1, showing a 3.4 % deviation from the theoretical value of 230.5 cm–1 (data sourced from the MCML software package). Experimental validation across three model systems demonstrated its diagnostic potential: (1) inflammatory monitoring revealed a 7.9 % μa increase at infection sites (258 vs. 239 cm–1 in normal vasculature, p < 0.001) within 12 h; (2) tumor tracking showed 5.5 % higher μa in tumor vasculature (252 vs. 237 cm–1); and (3) cerebral vascular imaging achieved μa quantification (235 cm–1) following blood–brain barrier opening. These results establish that fluorescence microscopy provides exceptional molecular tracking capability, while OR-PAM delivers quantitative μa differences critical for distinguishing pathological tissues, offering a powerful tool for both fundamental research and clinical diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信